相關(guān)習(xí)題
 0  232344  232352  232358  232362  232368  232370  232374  232380  232382  232388  232394  232398  232400  232404  232410  232412  232418  232422  232424  232428  232430  232434  232436  232438  232439  232440  232442  232443  232444  232446  232448  232452  232454  232458  232460  232464  232470  232472  232478  232482  232484  232488  232494  232500  232502  232508  232512  232514  232520  232524  232530  232538  266669 

科目: 來源: 題型:解答題

20.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m、n∈[-1,1],m+n≠0時(shí)$\frac{f(m)+f(n)}{m+n}$>0.
(1)用定義證明f(x)在[-1,1]上是增函數(shù);
(2)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

19.某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級(jí)各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.如圖表是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻率分布直方圖和頻數(shù)分布表,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱為“手機(jī)迷”.
高二學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表
時(shí)間分組頻數(shù)
[0,20)12
[20,40)20
[40,60)24
[60,80)26
[80,100)14
[100,120)4
(1)將頻率視為概率,估計(jì)哪個(gè)年級(jí)的學(xué)生是“手機(jī)迷”的概率大?請(qǐng)說明理由.
(2)在高一的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有90%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?說明理由.
非手機(jī)迷手機(jī)迷合計(jì)
合計(jì)
附:隨機(jī)變量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d為樣本總量).

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知集合A={x|$\frac{x-1}{x+1}$≥0},B={x|2a<x≤a+1,a<1},B⊆A,則實(shí)數(shù)a的取值范圍是(-∞,-2)∪[$\frac{1}{2}$,1).

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知△ABC的一個(gè)內(nèi)角為120°,并且三邊長(zhǎng)度構(gòu)成以首項(xiàng)為3的等差數(shù)列,則△ABC的最小角的余弦值為$\frac{13}{14}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.若向量$\vec a=(x,1)$與$\vec b=(4,x)$垂直,則x=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,且向量$k\overrightarrow a-\overrightarrow b$與$\overrightarrow a+3\overrightarrow b$平行,則k=( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{13}{3}$D.$\frac{17}{7}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知二項(xiàng)式($\sqrt{5}$x-1)3=a${\;}_{{0}_{\;}}$+a1x+a2x2+a3x3,則(a0+a22-(a1+a32=-64.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知O是坐標(biāo)原點(diǎn),點(diǎn)M坐標(biāo)為(2,1),點(diǎn)N(x,y)是平面區(qū)域$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OM}•\overrightarrow{ON}$的最小值為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足f(x1)=f(x2)=f(x3)=f(x4),則$\frac{{{x_3}•{x_4}}}{{{x_1}•{x_2}}}$的取值范圍是(20,32).

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知f(x)=|x-1|+|x-a|(a∈R),g(x)=x+$\frac{1}{x}$+4(x<0)
(1)若a=3,求不等式f(x)≥4的解集;
(2)對(duì)?x1∈R,?x2∈(-∞,0)有f(x1)≥g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案