相關(guān)習(xí)題
 0  232354  232362  232368  232372  232378  232380  232384  232390  232392  232398  232404  232408  232410  232414  232420  232422  232428  232432  232434  232438  232440  232444  232446  232448  232449  232450  232452  232453  232454  232456  232458  232462  232464  232468  232470  232474  232480  232482  232488  232492  232494  232498  232504  232510  232512  232518  232522  232524  232530  232534  232540  232548  266669 

科目: 來源: 題型:填空題

15.若定義運算a⊙b=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$,則函數(shù)f(x)=x⊙(2-3x)的值域為(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目: 來源: 題型:解答題

14.以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù):
房屋面積x(m211511080135105
銷售價格y(萬元)24.821.618.429.222
(1)畫出數(shù)據(jù)對應(yīng)的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線.
(參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\overline{y}$=$\stackrel{∧}$$\overline{x}$+$\stackrel{∧}{a}$,其中$\sum_{i=1}^{5}{{x}_{i}}^{2}$=60975,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=12952.

查看答案和解析>>

科目: 來源: 題型:解答題

13.在某籃球比賽中,根據(jù)甲和乙兩人的得分情況得到如圖所示的莖葉圖.

(1)從莖葉圖的特征來說明他們誰發(fā)揮得更穩(wěn)定;
(2)用樣本的數(shù)字特征驗證他們誰發(fā)揮得更好.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.命題:“若a2+b2=0(a,b∈R),則a=0且b=0”的逆否命題是( 。
A.若a≠0或b≠0(a,b∈R),則a2+b2≠0B.若a=b≠0(a,b∈R),則a2+b2≠0
C.若a≠0且b≠0(a,b∈R),則a2+b2≠0D.若a≠b≠0(a,b∈R),則a2+b2≠0

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知命題p:|1-$\frac{x-1}{2}$|≤3;q:x2-2x+1-m20,(m>0)若¬p是q的充分非必要條件,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

10.計算:($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$+(log316)•(log2$\frac{1}{9}$)=-5.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,則f(a)等于( 。
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知集合A={x|y=ln(1-x2)},B={y|y=ex},則集合(∁RA)∪B=(  )
A.(0,1]B.[1,+∞)C.(-∞,-1]∪[1,+∞]D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知集合M={0,1,2,5,6,7},N={2,3,5,7},若P=M∩N,則P的真子集個數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知全集U=R,A={x∈R|x2-3x+b=0},B={x∈R|(x-2)(x2+3x-4=0)}.
(1)若b=4時,存在集合M使得A是M的真子集,M是B的真子集,求出所有這樣的集合M;
(2)集合A,B是否能滿足(∁UB)∩A=∅?若能,求實數(shù)b的取值范圍;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案