相關(guān)習(xí)題
 0  232429  232437  232443  232447  232453  232455  232459  232465  232467  232473  232479  232483  232485  232489  232495  232497  232503  232507  232509  232513  232515  232519  232521  232523  232524  232525  232527  232528  232529  232531  232533  232537  232539  232543  232545  232549  232555  232557  232563  232567  232569  232573  232579  232585  232587  232593  232597  232599  232605  232609  232615  232623  266669 

科目: 來源: 題型:解答題

3.在斜三棱柱ABC-A1B1C1中BC⊥CC1,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D.
(1)證明:BC⊥平面ACC1A1
(2)若二面角A-A1B-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=log2x.
(1)設(shè)函數(shù)g(x)=f(2x+1)+kx,若函數(shù)g(x)為偶函數(shù),求實數(shù)k的值;
(2)在(1)條件下,h(x)為定義域為R的奇函數(shù),且x>0時,h(x)=2${\;}^{g(x)+\frac{1}{2}x}$-1.
(i)求h(x)的解析式;
(ii)若對任意的t∈[-1,1],h(x2+tx)≥$\frac{{h}^{3}(x)}{|h(x)|}$恒成立,求x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=cos(3x+$\frac{π}{3}$),其中x∈[$\frac{π}{6}$,m],若f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知在△ABC中,AB=4,AC=6,BC=$\sqrt{7}$,其外接圓的圓心為O,則$\overrightarrow{AO}•\overrightarrow{AB}$=8.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.若實數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y≥0}\end{array}}\right.$,目標(biāo)函數(shù)t=x-2y的最大值為( 。
A.-4B.4C.2D.0

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)=ex-ax在(3,+∞)單調(diào)遞增,則實數(shù)a的取值范圍是(-∞,e3].

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{aelnx}{x}$,g(x)=-$\frac{1}{2}$x+a+e(e為自然對數(shù)的底數(shù),a∈R且a≠0).
(1)若曲線y=f(x)在點(1,f(1))處的切線過點(0,-2e),求a的值;
(2)若關(guān)于x的方程f(x)-g(x)=0在區(qū)間[$\frac{1}{e}$,+∞)上有且只有兩個實數(shù)根,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.點集$M=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}\right.θ是參數(shù),0<θ<π}\right.}\right\}$,N={(x,y)|y=x+b},若M∩N≠∅,則b應(yīng)滿足( 。
A.$-3\sqrt{2}≤b≤3\sqrt{2}$B.$-3\sqrt{2}<b<-3$C.$0≤b≤3\sqrt{2}$D.$-3<b≤3\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.當(dāng)實數(shù)m為何值時,$z=\frac{{{m^2}-m-6}}{m+3}+({m^2}+5m+6)•i$,
(1)為實數(shù);  
(2)為虛數(shù);   
(3)為純虛數(shù);  
(4)復(fù)數(shù)z對應(yīng)的點在復(fù)平面內(nèi)的第二象限.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知數(shù)列{an}通項公式an=2n,其前n項和Sn,數(shù)列{bn}是以$\frac{1}{2}$為首項的等比數(shù)列,且${b_1}{b_2}{b_3}=\frac{1}{64}$.
(1)求數(shù)列{bn}的通項公式;
(2)記Cn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$,求Cn
(3)設(shè)數(shù)列{bn}的前n項和為Tn,若對任意n∈N*不等式Cn≥$\frac{1}{4}t-\frac{1}{2}{T_n}$恒成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案