相關(guān)習(xí)題
 0  233225  233233  233239  233243  233249  233251  233255  233261  233263  233269  233275  233279  233281  233285  233291  233293  233299  233303  233305  233309  233311  233315  233317  233319  233320  233321  233323  233324  233325  233327  233329  233333  233335  233339  233341  233345  233351  233353  233359  233363  233365  233369  233375  233381  233383  233389  233393  233395  233401  233405  233411  233419  266669 

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)=cos(x+$\frac{π}{4}$)sinx,則函數(shù)f(x)的圖象(  )
A.最小正周期為T=2πB.關(guān)于點(diǎn)($\frac{π}{8}$,-$\frac{\sqrt{2}}{4}$)對(duì)稱
C.在區(qū)間(0,$\frac{π}{8}$)上為減函數(shù)D.關(guān)于直線x=$\frac{π}{8}$對(duì)稱

查看答案和解析>>

科目: 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,當(dāng)xy最大時(shí),該幾何體的體積為( 。
A.$\frac{5\sqrt{30}}{6}$B.$\frac{5\sqrt{30}}{4}$C.$\frac{5\sqrt{30}}{2}$D.$\frac{5\sqrt{15}}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.若tanα=3,求值
(1)$\frac{cosα+sinα}{cosα-sinα}$,
(2)2sin2α-sinαcosα+cos2α

查看答案和解析>>

科目: 來源: 題型:填空題

11.如圖,在山頂C測(cè)得山下塔的塔頂A和塔底B的俯角分別為30°和60°,已知塔高AB為20m,則山高CD為30m.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)ω>0,若函數(shù)f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上單調(diào)遞增,則ω的取值范圍是(  )
A.(0,$\frac{1}{2}$]B.(1,$\frac{3}{2}$]C.[0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$]

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知$\overrightarrow m$=(2sinx,2cosx),$\overrightarrow n$=(cos$\frac{π}{3}$,-sin$\frac{π}{3}$),f(x)=$\overrightarrow m$•$\overrightarrow n$+1.
(Ⅰ)求f($\frac{π}{2}$)的值及f(x)的最大值;
(Ⅱ)若函數(shù)g(x)=f($\frac{π}{2}$x),求g(1)+g(2)+g(3)+…+g(2014)+g(2015);
(Ⅲ) 若函數(shù)h(x)=$\frac{{sinx•{f^2}(x+\frac{π}{3})-8}}{{1+{{cos}^2}x}}$在區(qū)間[-$\frac{5π}{4}$,$\frac{5π}{4}$]上的最大值為M,最小值為m,求M+m的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.設(shè)f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-1,則實(shí)數(shù)m的值為( 。
A.±1B.±3C.-3或1D.-1或3

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),
(Ⅰ) 求證:PC∥平面EBD;
(Ⅱ) 求證:BC⊥PC.
(Ⅲ) 若:PD=DA=2,求:三棱錐E-ABD的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(-sin$\frac{x}{2}$,-cos$\frac{x}{2}$),其中x∈[$\frac{π}{2}$,π].
(1)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,求函數(shù)y=f(x)的對(duì)稱軸及單調(diào)增區(qū)間;
(2)若|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,求x的值;
(3)函數(shù)g(x)=c-$\sqrt{3}$cos2x,若對(duì)于任意的x∈[$\frac{π}{2}$,π],f(x)<g(x)都成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知sin(α-$\frac{π}{6}$)=$\frac{2}{3}$,α∈(π,$\frac{3π}{2}$),cos($\frac{π}{3}$+β)=$\frac{5}{13}$,β∈(0,π),求cos(β-α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案