相關(guān)習題
 0  233990  233998  234004  234008  234014  234016  234020  234026  234028  234034  234040  234044  234046  234050  234056  234058  234064  234068  234070  234074  234076  234080  234082  234084  234085  234086  234088  234089  234090  234092  234094  234098  234100  234104  234106  234110  234116  234118  234124  234128  234130  234134  234140  234146  234148  234154  234158  234160  234166  234170  234176  234184  266669 

科目: 來源: 題型:解答題

2.求極限$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知命題p:所有等差數(shù)列{an}的前n項和是Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$,命題q:有的等比數(shù)列{an}的前n項和不是Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(q是公比).
(1)寫出¬p和¬q,并判斷真假.
(2)寫出p∧q、p∨q、(¬p)∧q、(¬q)∨p.并判斷真假.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知函數(shù)y=f(x),y=g(x)的值域均為R,有以下命題:
①若對于任意x∈R都有f[f(x)]=f(x)成立,則f(x)=x.
②若對于任意x∈R都有f[f(x)]=x成立,則f(x)=x.
③若存在唯一的實數(shù)a,使得f[g(a)]=a成立,且對于任意x∈R都有g(shù)[f(x)]=x2-x+1成立,則存在唯一實數(shù)x0,使得g(ax0)=1,f(x0)=a.
④若存在實數(shù)x0,y0,f[g(x0)]=x0,且g(x0)=g(y0),則x0=y0
其中是真命題的序號是①③④.(寫出所有滿足條件的命題序號)

查看答案和解析>>

科目: 來源: 題型:解答題

19.畫出$\frac{5}{6}$π的正弦、余弦線,并寫出對應(yīng)的正弦、余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f1(x)=$\frac{1}{1+x}$-$\frac{1}{(1+x)^{2}}$(t-x),其中t為正常數(shù).
(1)求函數(shù)f1(x)在(0,+∞)上的最大值;
(2)設(shè)數(shù)列{an}滿足:a1=$\frac{5}{3}$,3an+1=an+2,完成下面兩個問題:
①求證:對?x>0,$\frac{1}{{a}_{n}}$≥f${\;}_{\frac{2}{{3}^{n}}}$(x)(n∈N*);
②對?n∈N*,你能否比較$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$與$\frac{{n}^{2}}{n+1}$的大小?若能,請給予證明;若不能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{|x-4|},x≠4}\\{2,x=4}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1,x2,x3,x4,x5,h(x)=lg|x-4|,則h(x1+x2+x3+x4+x5)等于( 。
A.3B.lg12C.lg20D.4lg2

查看答案和解析>>

科目: 來源: 題型:填空題

16.設(shè)x>0,y>0,已知($\sqrt{{x}^{2}+1}$-x+1)($\sqrt{{y}^{2}+1}$-y+1)=2,則xy-2=-1.

查看答案和解析>>

科目: 來源: 題型:填空題

15.有下列命題:
①在函數(shù)y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象中,相鄰兩個對稱中心的距離為π;
②命題:“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sin≤1,則¬p是:存在x0∈R,使得sinx0>1;
⑤命題“若0<a<1,則loga(a+1)>loga(1+$\frac{1}{a}$)”是真命題;
⑥|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$+$\overrightarrow$|恒成立;
⑦若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$;  
其中所有真命題的序號是③④⑤⑦.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知曲線C1的極坐標方程為ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直線l的極坐標方程為ρ=$\frac{4}{sinθ+cosθ}$.
(Ⅰ)寫出曲線C1與直線l的直角坐標方程;
(Ⅱ)設(shè)Q為曲線C1上一動點,求Q點到直線l距離的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.若存在正實數(shù)t,使得函數(shù)f(x)在給定區(qū)間M上,對于任意x∈M,有x+t∈M,且f(x+t)≥f(x),則f(x)稱為M上的t級類增函數(shù),則下列命題正確的是(  )
A.函數(shù)f(x)=$\frac{4}{x}$+x是(1,+∞)上的1級類增函數(shù)
B.函數(shù)f(x)=|log2(x-1)|是(1,+∞)上的1級類增函數(shù)
C.若函數(shù)f(x)=x2-3x為[0,+∞)上的t級類增函數(shù),則實數(shù)t的取值范圍為[1,+∞)
D.若函數(shù)f(x)=sinx+ax為[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$級類增函數(shù),則整數(shù)a的最小值為1

查看答案和解析>>

同步練習冊答案