相關(guān)習(xí)題
 0  234613  234621  234627  234631  234637  234639  234643  234649  234651  234657  234663  234667  234669  234673  234679  234681  234687  234691  234693  234697  234699  234703  234705  234707  234708  234709  234711  234712  234713  234715  234717  234721  234723  234727  234729  234733  234739  234741  234747  234751  234753  234757  234763  234769  234771  234777  234781  234783  234789  234793  234799  234807  266669 

科目: 來源: 題型:解答題

20.某廠生產(chǎn)的某種產(chǎn)品包括一等品和二等品,如果生產(chǎn)出一件一等品,可獲利200元,如果生產(chǎn)出一件二等品則損失100元,已知該廠生產(chǎn)該種產(chǎn)品的過程中,二等品率p與日產(chǎn)量x的函數(shù)關(guān)系是:p=$\frac{3x}{4x+32}$(x∈N*),問該廠的日產(chǎn)量為多少件時(shí),可獲得最大盈利,并求出最大日盈利額.(二等品率p為日產(chǎn)二等品數(shù)與日產(chǎn)量的比值)

查看答案和解析>>

科目: 來源: 題型:填空題

19.若實(shí)數(shù)x,y滿足2|x|-1≤y≤x+1,則z=4x-y的最小值為-3.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=x-alnx,$g(x)=-\frac{a+1}{x}$
(1)若a=1,求函數(shù)f(x)在x=e處的切線方程
(2)設(shè)函數(shù)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間
(3)若存在x0∈[1,e],(e=2.718…為自然對數(shù)的底數(shù)),使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若$\frac{{|f(lnx)-f(ln\frac{1}{x})|}}{2}>f(1)$,則x的取值范圍是( 。
A.$(-∞\;,\;\;\frac{1}{e})$B.(e,+∞)C.$(\frac{1}{e}\;,\;\;e)$D.$(0\;,\;\;\frac{1}{e})$∪(e,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)bn=$\frac{1}{{a_{2n-1}^{\;}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:填空題

15.某校數(shù)學(xué)課外小組在坐標(biāo)紙上為學(xué)校的一塊空地設(shè)計(jì)植樹方案為:第K棵樹種植在點(diǎn)Pk(xk,yk)處,其中x1=1,y1=1,當(dāng)K≥2時(shí),$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]\\{y_k}={y_{k-1}}+T(\frac{k-1}{5})-T(\frac{k-2}{5})\end{array}\right.$T(a)表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如T(2.6)=2,T(0.2)=0.按此方案第2016棵樹種植點(diǎn)的坐標(biāo)應(yīng)為(1,404).

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知復(fù)數(shù)$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虛數(shù)單位,則|a+bi|=( 。
A.-1-3iB.$\sqrt{5}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目: 來源: 題型:填空題

13.離心率為$\frac{3}{4}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到橢圓的兩個(gè)焦點(diǎn)距離之和為16,則,橢圓C的方程為$\frac{x^2}{64}+\frac{y^2}{28}=1$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知圓(x-1)2+y2=25,直線ax-y+5=0與圓相交于不同的兩點(diǎn)A、B.
(1)求實(shí)數(shù)a的取值范圍;
(2)若弦AB的垂直平分線l過點(diǎn)P(-2,4),求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:填空題

11.如果f[f(x)]=4x+6,且f(x)是遞增函數(shù),則一次函數(shù)f(x)=2x+2.

查看答案和解析>>

同步練習(xí)冊答案