相關(guān)習(xí)題
 0  234680  234688  234694  234698  234704  234706  234710  234716  234718  234724  234730  234734  234736  234740  234746  234748  234754  234758  234760  234764  234766  234770  234772  234774  234775  234776  234778  234779  234780  234782  234784  234788  234790  234794  234796  234800  234806  234808  234814  234818  234820  234824  234830  234836  234838  234844  234848  234850  234856  234860  234866  234874  266669 

科目: 來源: 題型:選擇題

4.已知全集U=R,A={x|x2<16},B={x|y=log3(x-4)},則下列關(guān)系正確的是( 。
A.A∪B=RB.A∪(∁RB)=RC.A∩(∁RB)=RD.(∁RA)∪B=R

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓E的短軸的兩端點(diǎn)和兩焦點(diǎn)所圍成的四邊形的周長為8,直線l:y=kx+m與y軸交于點(diǎn)M,與橢圓E交于不同兩點(diǎn)A,B.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{AM}=-3\overrightarrow{BM}$,求m2的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

2.隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點(diǎn)數(shù)之和不超過5的概率為$\frac{5}{18}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知a=x2+x+$\sqrt{2}$,b=lg3,$c={e^{-\frac{1}{2}}}$,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則C1的離心率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設(shè)(x1,y1),(x2,y2),…,(xn,yn)是變量x和y的n個樣本點(diǎn),直線l是由這些樣本點(diǎn)通過最小二乘法得到的線性回歸直線(如圖),則下列結(jié)論正確的是(  )
A.x和y成正相關(guān)
B.若直線l方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則$\widehat$>0
C.最小二乘法是使盡量多的樣本點(diǎn)落在直線上的方法
D.直線l過點(diǎn)$(\overline x,\overline y)$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知{an}是首項(xiàng)為1的等比數(shù)列,Sn是其前n項(xiàng)和,若S4=5S2,則log4a3的值為( 。
A.1B.2C.0或1D.0或2

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)$y=x+\frac{t}{x}$有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在$(0,\sqrt{t}]$上是減函數(shù),在$[\sqrt{t},+∞)$上是增函數(shù).
(1)已知f(x)=$\frac{4{x}^{2}+4x+5}{2x+1}$-8,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=m-$\frac{2}{{2}^{x}+1}$,(m∈R).
(1)試判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(2)是否存在實(shí)數(shù)m使函數(shù)f(x)為奇函數(shù)?
(3)對于(2)中的函數(shù)f(x),若f(t+1)+f(t)≥0,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知A={x|ax+2=0},B={x|x2-3x+2=0},且A⊆B.求由a可能的取值組成的集合.

查看答案和解析>>

同步練習(xí)冊答案