相關(guān)習(xí)題
 0  234923  234931  234937  234941  234947  234949  234953  234959  234961  234967  234973  234977  234979  234983  234989  234991  234997  235001  235003  235007  235009  235013  235015  235017  235018  235019  235021  235022  235023  235025  235027  235031  235033  235037  235039  235043  235049  235051  235057  235061  235063  235067  235073  235079  235081  235087  235091  235093  235099  235103  235109  235117  266669 

科目: 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既無最大值,也無最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),則下列結(jié)論成立的是 ( 。
A.若f(x1)≤f(x)≤f(x2)對?x∈R恒成立,則|x2-x1|min
B.y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{2π}{3}$,0)中心對稱
C.函數(shù)f(x)的單調(diào)區(qū)間為:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)
D.函數(shù)y=|f(x)|(x∈R)的圖象相鄰兩條對稱軸之間的距離是$\frac{π}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知tanα=-3,tan(α-2β)=1,則tan4β=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.2D.-2

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知兩個等差數(shù)列{an},{bn},它們的前n項(xiàng)和分別為Sn,S'n,若$\frac{S_n}{{{{S'}_n}}}=\frac{2n+3}{3n-1}$,則$\frac{a_9}{b_9}$=$\frac{37}{50}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)y=loga(2x-1)+2(a>0且a≠1)的圖象恒過點(diǎn)P,則點(diǎn)P的坐標(biāo)是(1,2).

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知角α的終邊上有一點(diǎn)P(1,3),則$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值為-$\frac{2}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知f(x)=x2-ax+1(a為常數(shù)),
(1)若f(x)的圖象與x軸有唯一的交點(diǎn),求a的值;
(2)若f(x)在區(qū)間[a-1,a+1]為單調(diào)函數(shù),求a的取值范圍;
(3)求f(x)在區(qū)間[0,2]內(nèi)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)y=f(x)的定義域?yàn)閇-1,1],且f(-x)=-f(x),f(0)=1,當(dāng)a,b∈[-1,1]且a+b≠0,時$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(1)判斷f(x)在[-1,1]上的單調(diào)性并證明結(jié)論;
(2)解不等式f(x+$\frac{1}{2}$)<f($\frac{1}{x-1}$)

查看答案和解析>>

科目: 來源: 題型:解答題

1.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(Ⅰ)當(dāng)每輛車的月租金定為4000元時,能租出多少輛車?
(Ⅱ)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知直線l的參數(shù)方程是,$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+1}\end{array}\right.$(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立平面直角坐極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,
(1)求曲線C和直線l的普通方程;
(2)直線l與曲線C分別交于A,B兩點(diǎn),求|AB|的長.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+1.
(1)當(dāng)a=1時,求f(x)在x=0處的切線方程;
(2)若f(x)在[0,1]上的最小值為$\frac{11}{12}$,求a的值.

查看答案和解析>>

同步練習(xí)冊答案