相關(guān)習(xí)題
 0  235637  235645  235651  235655  235661  235663  235667  235673  235675  235681  235687  235691  235693  235697  235703  235705  235711  235715  235717  235721  235723  235727  235729  235731  235732  235733  235735  235736  235737  235739  235741  235745  235747  235751  235753  235757  235763  235765  235771  235775  235777  235781  235787  235793  235795  235801  235805  235807  235813  235817  235823  235831  266669 

科目: 來源: 題型:選擇題

12.復(fù)數(shù)i(2-i)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為( 。
A.(-2,1)B.(2,-1)C.(1,2)D.(-1,2)

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,且經(jīng)過點P(0,$\sqrt{5}$),離心率為$\frac{2}{3}$,過點F1的直線l與直線x=4交于點A
(I)  求橢圓C的方程;
(II) 當(dāng)線段F1A的垂直平分線經(jīng)過點F2時,求直線l的方程;
(III)點B在橢圓C上,當(dāng)OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-mx(m>0).
(I) 若m=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(II)求函數(shù)f(x)的最大值g(m),并求使g(m)>m-2成立的m取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.在三棱錐P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分別為BC,AB中點.
(I)求證:MN∥平面PAC
(II)求證:平面PBC⊥平面PAM
(III)在AC上是否存在點E,使得ME⊥平面PAC,若存在,求出ME的長,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

8.昌平區(qū)在濱河公園舉辦中學(xué)生冬季越野賽.按年齡段將參賽學(xué)生分為A,B,C三個組,各組人數(shù)如下表所示.組委會用分層抽樣的方法從三個組中選出6名代表.
    組別AB    C
    人數(shù)100150    50
( I)  求A,B,C三個組各選出代表的個數(shù);
( II) 若從選出的6名代表中隨機抽出2人在越野賽閉幕式上發(fā)言,求這兩人來自同一組的概率P1;
( III)若從所有參賽的300名學(xué)生中隨機抽取2人在越野賽閉幕式上發(fā)言,設(shè)這兩人來自同一組的概率為P2,試判斷P1與P2的大小關(guān)系(不要求證明).

查看答案和解析>>

科目: 來源: 題型:填空題

7.若函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},-1≤x<1\\ lnx,1≤x≤a.\end{array}\right.$
①當(dāng)a=2時,若f(x)=1,則x=0;
②若f(x)的值域為[0,2],則a的取值范圍是[$\sqrt{e}$,e2].

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線的傾斜角為$\frac{π}{6}$,則雙曲線的漸近線的方程為y=±$\frac{\sqrt{3}}{3}$;該雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在△ABC中,$C=\sqrt{2},∠B=\frac{π}{4},b=2$,則∠A=105°.

查看答案和解析>>

科目: 來源: 題型:填空題

4.${e^{-2}},{2^{\frac{1}{e}}},ln2$三個數(shù)中最大的數(shù)是${2^{\frac{1}{e}}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知數(shù)列{an}的前n項和為Sn,且${S_n}={n^2}+n$,則a3=6.

查看答案和解析>>

同步練習(xí)冊答案