相關(guān)習(xí)題
 0  236032  236040  236046  236050  236056  236058  236062  236068  236070  236076  236082  236086  236088  236092  236098  236100  236106  236110  236112  236116  236118  236122  236124  236126  236127  236128  236130  236131  236132  236134  236136  236140  236142  236146  236148  236152  236158  236160  236166  236170  236172  236176  236182  236188  236190  236196  236200  236202  236208  236212  236218  236226  266669 

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且(x+1)f(x)+xf′(x)≥0對x∈[0,+∞)恒成立,則下列不等式一定成立的是( 。
A.f(1)<2ef(2)B.ef(1)<f(2)C.f(1)<0D.ef(e)<2f(2)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上、下焦點分別為F1,F(xiàn)2,過點F1的直線與雙曲線交于P,Q兩點,且|QF1|-|PF1|=2a,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則此雙曲線的離心率為(  )
A.3B.$\sqrt{5}$C.$\frac{5}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若在區(qū)間[a,a+2]上,函數(shù)f(x)=2x-5的最小值不小于g(x)=4x-x2的最大值,則正數(shù)a的取值范圍為( 。
A.[3,+∞)B.(0,3)C.(3,+∞)D.[3,4)

查看答案和解析>>

科目: 來源: 題型:選擇題

2.從拋物線y2=2px(p>0)的上一點P引其準線的垂線,垂足為M,設(shè)拋物線的焦點為F,若|PF|=4,M到直線PF的距離為4,則此拋物線的方程為(  )
A.y2=2xB.y2=4xC.y2=6xD.y2=8x

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)f(x)+g(x)=${∫}_{x}^{x+1}$2tdt,x∈R,若函數(shù)f(x)為奇函數(shù),則g(x)的解析式可以為( 。
A.x3B.cosxC.1+xD.xex

查看答案和解析>>

科目: 來源: 題型:選擇題

20.在Rt△AOB中,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,|$\overrightarrow{OA}$|=$\sqrt{5}$,|$\overrightarrow{OB}$|=2$\sqrt{5}$,AB邊上的高線為OD,點E位于線段OD上,若$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{3}{4}$,則向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影為( 。
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$或$\frac{3}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知三點A(2,-3),B(4,3),C(5,m)在同一直線上,則m的值為6.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知實數(shù)x、y滿足$\left\{\begin{array}{l}y≥0\\ x+y≤0\\ 2x+y+2≤0\end{array}$,則z=$\frac{y-1}{x-1}$的取值范圍是( 。
A.$(-2,\left.{-\frac{1}{3}}]$B.$(-2,\left.{\frac{1}{2}}]$C.$(-\frac{1}{3},\left.{\frac{1}{2}}]$D.$(-1,\left.{\frac{1}{2}}]$

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知兩個單位向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,則|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|=( 。
A.$\frac{1}{2}$B.2$\sqrt{3}$C.$\sqrt{7}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-ax(a∈R)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)g(x)=f(x)-lnx+2ex,當(dāng)g(x)在[$\frac{1}{2}$,2]上存在零點,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案