相關習題
 0  237117  237125  237131  237135  237141  237143  237147  237153  237155  237161  237167  237171  237173  237177  237183  237185  237191  237195  237197  237201  237203  237207  237209  237211  237212  237213  237215  237216  237217  237219  237221  237225  237227  237231  237233  237237  237243  237245  237251  237255  237257  237261  237267  237273  237275  237281  237285  237287  237293  237297  237303  237311  266669 

科目: 來源: 題型:解答題

8.已知f(α)=cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$
(Ⅰ)當α為第二象限角時,化簡f(α);
(Ⅱ)當α∈($\frac{π}{2}$,π)時,求f(α)的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,過點F作x軸的垂線與雙曲線交于B,C兩點(點B在x軸上方),過點B作斜率為負數(shù)的漸近線的垂線,過點C作斜率為正數(shù)的漸近線的垂線,兩垂線交于點D,若D到直線BC的距離小于虛軸長的2倍,則雙曲線的離心率e的取值范圍是( 。
A.1<e<$\sqrt{3}$B.e>$\sqrt{3}$C.1<e<$\sqrt{5}$D.e>$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)=x2e2x+m|x|ex+1(m∈R)有四個零點,則m的取值范圍為( 。
A.(-∞,-e-$\frac{1}{e}$)B.(-∞,e+$\frac{1}{e}$)C.(-e-$\frac{1}{e}$,-2)D.(-∞,-$\frac{1}{e}$)

查看答案和解析>>

科目: 來源: 題型:解答題

5.(1)求函數(shù)f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
 (2)證明:不等式x1-x+(1-x)x≤$\sqrt{2}$在(0,1)上恒成立.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,F(xiàn)2與橢圓上點的連線的中最短線段的長為$\sqrt{2}$-1.
(1)求橢圓Г的標準方程;
(2)已知Г上存在一點P,使得直線PF1,PF2分別交橢圓Г于A,B,若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),求λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{alnx-b{e}^{x}}{x}$ (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
(I)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
(II)(i)當 a=b=l 時,證明:xf(x)+2<0;
(ii)當 a=1,b=-1 時,若不等式:xf(x)>e+m(x-1)在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=xlnx,e為自然對數(shù)的底數(shù).
(1)求曲線y=f(x)在x=e-2處的切線方程;
(2)關于x的不等式f(x)≥λ(x-1)在(0,+∞)上恒成立,求實數(shù)λ的值;
(3)關于x的方程f(x)=a有兩個實根x1,x2,求證:|x1-x2|<2a+1+e-2

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),$-\frac{π}{2}$<α<β<$\frac{π}{2}$.
(Ⅰ)若$\overrightarrow a⊥\overrightarrow b$,求$|\overrightarrow a-\overrightarrow b|$;
(Ⅱ)設$\overrightarrow c$=(1,0),若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知M、N分別是四面體OABC的棱OA,BC的中點,點P在線MN上,且MP=2PN,設向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OP}$=(  )
A.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)$f(x)=ax+\frac{x}$(其中a,b為常數(shù))的圖象經(jīng)過(1,2),$({2\;,\;\;\frac{5}{2}})$兩點.
(1)求函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)在(1,+∞)是增函數(shù);
(3)若不等式$\frac{{{{25}^m}}}{3}-{5^m}≥f(x)$對任意$x∈[{\frac{1}{2}\;,\;\;3}]$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案