A. | (-∞,-e-$\frac{1}{e}$) | B. | (-∞,e+$\frac{1}{e}$) | C. | (-e-$\frac{1}{e}$,-2) | D. | (-∞,-$\frac{1}{e}$) |
分析 令y=xex,則y'=(1+x)ex,求出極值點(diǎn),判斷函數(shù)的單調(diào)性,作出y=xex圖象,利用圖象變換得f(x)=|xex|圖象,令f(x)=t,則關(guān)于t方程h(t)=t2+mt+1=0兩根分別在$(0,\frac{1}{e}),(\frac{1}{e},+∞)$,滿足g(x)=-1的x有4個(gè),列出不等式求解即可.
解答 解:令y=xex,則y'=(1+x)ex,由y'=0,得x=-1,
當(dāng)x∈(-∞,-1)時(shí),y'<0,函數(shù)y單調(diào)遞減,
當(dāng)x∈(-1,+∞)時(shí),y'>0,函
數(shù)y單調(diào)遞增.作出y=xex圖象,
利用圖象變換得f(x)=|xex|圖象(如圖10),
令f(x)=t,則關(guān)于t方程h(t)=t2+mt+1=0兩根分別在$(0,\frac{1}{e}),(\frac{1}{e},+∞)$時(shí)(如圖11),
滿足g(x)=-1的x有4個(gè),由$h(\frac{1}{e})=\frac{1}{{e}^{2}}+\frac{1}{e}m+1<0$,
解得m<-e-$\frac{1}{e}$.
故選:A.
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的極值,函數(shù)的圖象的變換,函數(shù)零點(diǎn)個(gè)數(shù),考查函數(shù)與方程的綜合應(yīng)用,數(shù)形結(jié)合思想以及轉(zhuǎn)化思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,+∞) | B. | [2,4] | C. | [-1,5] | D. | [2,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2016) | B. | (-2018,-2016) | C. | (-2018,0) | D. | (-∞,-2018) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+2i | B. | 2+2i | C. | 2-i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{3}{2}$,$\frac{3\sqrt{2}}{2}$) | B. | ($\frac{3\sqrt{2}}{2}$,$\frac{3}{2}$) | C. | ($\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$) | D. | ($\frac{3\sqrt{3}}{2}$,$\frac{3}{2}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com