相關習題
 0  237846  237854  237860  237864  237870  237872  237876  237882  237884  237890  237896  237900  237902  237906  237912  237914  237920  237924  237926  237930  237932  237936  237938  237940  237941  237942  237944  237945  237946  237948  237950  237954  237956  237960  237962  237966  237972  237974  237980  237984  237986  237990  237996  238002  238004  238010  238014  238016  238022  238026  238032  238040  266669 

科目: 來源: 題型:解答題

20.已知過點(0,-2$\sqrt{3}$),斜率為$\sqrt{3}$的直線l過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點,橢圓C的中心關于直線l的對稱點在直線x=$\frac{{a}^{2}}{2}$上.
(1)求橢圓C的方程;
(2)過點E(-2,0)的直線m交橢圓C于點M、N,且滿足tan∠MON=$\frac{4\sqrt{6}}{3\overrightarrow{OM}•\overrightarrow{ON}}$(O為坐標原點),求直線m的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.函數(shù)f(x)的定義域為D,對給定的正數(shù)k,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)函數(shù);②f(x)在[a,b]上的值域為[ka,kb],則稱區(qū)間[a,b]為y=f(x)的k級“理想?yún)^(qū)間”.下列結(jié)論錯誤的是( 。
A.函數(shù)f(x)=x2(x∈R)存在1級“理想?yún)^(qū)間”
B.函數(shù)f(x)=ex(x∈R)不存在2級“理想?yún)^(qū)間”
C.函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$(x≥0)存在3級“理想?yún)^(qū)間”
D.函數(shù)f(x)=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)不存在4級“理想?yún)^(qū)間”

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知正項數(shù)列n的前n項和為Sn,且a1=1,an+12=Sn+1+Sn
(1)求數(shù)列{an}的通項公式;
(2)設${b_n}={a_{2n-1}}•{2^{a_n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

17.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則a12+a22+…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.函數(shù)f(x)=sin(x+$\frac{5π}{2}$)的圖象關于( 。
A.原點對稱B.y軸對稱C.直線x=$\frac{5π}{2}$對稱D.直線x=-$\frac{5π}{2}$對稱

查看答案和解析>>

科目: 來源: 題型:選擇題

15.sin(-1740°)的值是( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.將一枚骰子先后拋擲兩次得到的點數(shù)依次記為a,b,則直線ax+by=0與圓(x-3)2+y2=3無公共點的概率為$\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.由正整數(shù)組成的一組數(shù)據(jù)x1,x2,x3,x4,其平均數(shù)和中位數(shù)都是2,且標準差等于$\frac{{\sqrt{2}}}{2}$,則這組數(shù)據(jù)為1,2,2,3. (從小到大排列)

查看答案和解析>>

科目: 來源: 題型:解答題

12.某學校為了制定治理學校門口上學,放學期間家長接送孩子亂停車現(xiàn)象的措施,對全校學生家長進行了問卷調(diào)查,得到了如下的列聯(lián)表(單位:人)
同一限定區(qū)域停車不同一限定區(qū)域停車合計
5
10
合計50
已知在抽取的50分調(diào)查問卷中速記抽取一份,抽到不同意限定區(qū)域停車問卷的概率為$\frac{2}{5}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握恩威是否同意限定區(qū)域停車與家長的性別有關?請說明理由.
附臨界表及參考公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知集合M={銳角},N={小于90°的角},P={第一象限的角},下列說法:
①P⊆N,②N∩P=M,③M⊆P,④(M∪N)⊆P
其中正確的是③.

查看答案和解析>>

同步練習冊答案