17.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則a12+a22+…+an2=$\frac{1}{3}$(4n-1).

分析 由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,求出${a}_{n}={2}^{n-1}$,由此能求出${{a}_{n}}^{2}={4}^{n-1}$,從而利用等差數(shù)列前n項和公式能求出a12+a22+…+an2的值.

解答 解:∵在數(shù)列{an}中,Sn=a1+a2+…+an=2n-1,
∴a1=2-1=1,
當n≥2時,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1,
當n=1時,上式成立,
∴${a}_{n}={2}^{n-1}$,∴${{a}_{n}}^{2}={4}^{n-1}$,
∴a12+a22+…+an2=1+4+42+…+4n-1=$\frac{1×(1-{4}^{n})}{1-4}$=$\frac{1}{3}({4}^{n}-1)$.
故答案為:$\frac{1}{3}({4}^{n}-1)$.

點評 本題考查等比數(shù)列前n項的求法,是中檔題,解題時要認真審題,注意等比數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知P(x,y)滿足$\left\{\begin{array}{l}{x≤2}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則z=x-y最小值是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止.設在每局中參賽者勝負的概率均為$\frac{1}{2}$,且各局勝負相互獨立.求:
(1)打滿4局比賽還未停止的概率;
(2)比賽停止時已打局數(shù)ξ的分布列與期望E(ξ).令Ak,Bk,Ck分別表示甲、乙、丙在第k局中獲勝.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.學校某文具商店經營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應求,則可以從外部調劑供應,此時每件文具僅獲利2元.為了了解市場需求的情況,經銷商統(tǒng)計了去年一年(52周)的銷售情況.
銷售量(件)10111213141516
周數(shù)248131384
以去年每周的銷售量的頻率為今年每周市場需求量的概率.
(1)要使進貨量不超過市場需求量的概率大于0.5,問進貨量的最大值是多少?
(2)如果今年的周進貨量為14,平均來說今年每周的利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某學校為了制定治理學校門口上學,放學期間家長接送孩子亂停車現(xiàn)象的措施,對全校學生家長進行了問卷調查,得到了如下的列聯(lián)表(單位:人)
同一限定區(qū)域停車不同一限定區(qū)域停車合計
5
10
合計50
已知在抽取的50分調查問卷中速記抽取一份,抽到不同意限定區(qū)域停車問卷的概率為$\frac{2}{5}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握恩威是否同意限定區(qū)域停車與家長的性別有關?請說明理由.
附臨界表及參考公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$,若關于x的方程f(x)=x+m(m∈R)恰有三個不相等的實數(shù)解,則m的取值范圍是(-$\frac{1}{4},0$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知四棱錐P-ABCD的外接球為球O,底面ABCD是矩形,面PAD⊥底面ABCD,且PA=PD=AD=2,AB=4,則球O的表面積為$\frac{64}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),A,B是圓(x+c)2+y2=4c2與C位于x軸上方的兩個交點,且F1A∥F2B,則雙曲線C的離心率為( 。
A.$\frac{{2+\sqrt{7}}}{3}$B.$\frac{{4+\sqrt{7}}}{3}$C.$\frac{{3+\sqrt{17}}}{4}$D.$\frac{{5+\sqrt{17}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(0,+∞)上單調遞減,若實數(shù)a滿足f(log2$\frac{1}{a}$)<f(-$\frac{1}{2}$),則a的取值范圍是(0,$\frac{\sqrt{2}}{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

同步練習冊答案