相關(guān)習(xí)題
 0  238482  238490  238496  238500  238506  238508  238512  238518  238520  238526  238532  238536  238538  238542  238548  238550  238556  238560  238562  238566  238568  238572  238574  238576  238577  238578  238580  238581  238582  238584  238586  238590  238592  238596  238598  238602  238608  238610  238616  238620  238622  238626  238632  238638  238640  238646  238650  238652  238658  238662  238668  238676  266669 

科目: 來源: 題型:選擇題

9.集合$A=\left\{{x\left|{\frac{x+2}{x-2}≤0}\right.}\right\}$,B={x|x-1≥0},則A∩B為( 。
A.[1,2]B.[1,2)C.[-2,∞)D.(-2,2]

查看答案和解析>>

科目: 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=3,AD=2$\sqrt{2}$,∠ABC=45°,P點(diǎn)在底面ABCD內(nèi)的射影E在線段AB上,且PE=2,BE=2EA,F(xiàn)為AD的中點(diǎn),M在線段CD上,且CM=λCD.
(Ⅰ)當(dāng)λ=$\frac{2}{3}$時,證明:平面PFM⊥平面PAB;
(Ⅱ)當(dāng)平面PAM與平面ABCD所成的二面角的正弦值為$\frac{{2\sqrt{5}}}{5}$時,求四棱錐P-ABCM的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

7.共享單車的出現(xiàn)方便了人們的出行,深受我市居民的喜愛.為調(diào)查某校大學(xué)生對共享單車的使用情況,從該校8000名學(xué)生中按年級用分層抽樣的方式隨機(jī)抽取了100位同學(xué)進(jìn)行調(diào)查,得到這100名同學(xué)每周使用共享單車的時間(單位:小時)如表:
使用時間[0,2](2,4](4,6](6,8](8,10]
人數(shù)104025205
(Ⅰ)已知該校大一學(xué)生由2400人,求抽取的100名學(xué)生中大一學(xué)生人數(shù);
(Ⅱ)作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅲ)估計該校大學(xué)生每周使用共享單車的平均時間$\overline t$(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\sqrt{3}$sin(2x-φ)-cos(2x-φ)(|φ|<$\frac{π}{2}$)的圖象關(guān)于y軸對稱,則f(x)在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上的最大值為( 。
A.1B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸入的n=5,則輸出的結(jié)果為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知點(diǎn)A(-1,-2)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點(diǎn)為F,過點(diǎn)F且與x軸垂直的直線與拋物線交于M,N兩點(diǎn),則線段MN的長為( 。
A.4B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設(shè)集合A={x|x2-3x+2≤0},B={(x,y)|x∈A,y∈A},則A∩B=( 。
A.AB.BC.A∪BD.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.高三某班有50名學(xué)生,一次數(shù)學(xué)考試的成績ξ服從正態(tài)分布:ξ~N(105,102),已知P(95≤ξ≤105)=0.3413,該班學(xué)生此次考試數(shù)學(xué)成績在115分以上的概率為( 。
A.0.1587B.0.3413C.0.1826D.0.5000

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若函數(shù)$f(x)=3+\frac{{{2^x}-1}}{{{2^x}+1}}+sin2x$在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n等于(  )
A.0B.2C.4D.6

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)$f(x)=3lnx-\frac{1}{2}{x^2}+x$,g(x)=3x+a.
(Ⅰ)若f(x)與g(x)相切,求a的值;
(Ⅱ)當(dāng)$a=\frac{5}{2}$時,P(x1,y1)為f(x)上一點(diǎn),Q(x2,y2)為g(x)上一點(diǎn),求|PQ|的最小值;
(Ⅲ)?x0>0,使f(x0)>g(x0)成立,求參數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案