相關(guān)習(xí)題
 0  239052  239060  239066  239070  239076  239078  239082  239088  239090  239096  239102  239106  239108  239112  239118  239120  239126  239130  239132  239136  239138  239142  239144  239146  239147  239148  239150  239151  239152  239154  239156  239160  239162  239166  239168  239172  239178  239180  239186  239190  239192  239196  239202  239208  239210  239216  239220  239222  239228  239232  239238  239246  266669 

科目: 來源: 題型:選擇題

7.《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α-β)的值為( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{0.2}x,x∈(1,+∞)}\\{2-2x,x∈(-∞,1]}\end{array}\right.$,若a=f(20.3),b=f(log0.32),c=f(log32),則a、b、c的大小關(guān)系是( 。
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,將不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域繞x軸旋轉(zhuǎn)一周所形成的幾何體的表面積是( 。
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

科目: 來源: 題型:選擇題

4.為了得到函數(shù)y=4sinxcosx,x∈R的圖象,只要把函數(shù)y=sin2x-$\sqrt{3}$cos2x,x∈R圖象上所有的點( 。
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,2),若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)等于( 。
A.5B.10C.-$\frac{5}{4}$D.-5

查看答案和解析>>

科目: 來源: 題型:填空題

2.某班開展一次智力競賽活動,共a,b,c三個問題,其中題a滿分是20分,題b,c滿分都是25分.每道題或者得滿分,或者得0分.活動結(jié)果顯示,全班同學(xué)每人至少答對一道題,有1名同學(xué)答對全部三道題,有15名同學(xué)答對其中兩道題.答對題a與題b的人數(shù)之和為29,答對題a與題c的人數(shù)之和為25,答對題b與題c的人數(shù)之和為20.則該班同學(xué)中只答對一道題的人數(shù)是4;該班的平均成績是42.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知圓O:x2+y2=1.圓O'與圓O關(guān)于直線x+y-2=0對稱,則圓O'的方程是(x-2)2+(y-2)2=1.

查看答案和解析>>

科目: 來源: 題型:填空題

20.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=1+2i.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=(x+a)ln(x+a),g(x)=-$\frac{a}{2}{x^2}$+ax.
(1)函數(shù)h(x)=f(ex-a)+g'(ex),x∈[-1,1],求函數(shù)h(x)的最小值;
(2)對任意x∈[2,+∞),都有f(x-a-1)-g(x)≤0成立,求a的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知圓C1:x2+y2=r2(r>0)與直線l0:y=$\frac{1}{2}x+\frac{3}{2}\sqrt{5}$相切,點A為圓C1上一動點,AN⊥x軸于點N,且動點M滿足$\overrightarrow{OM}+2\overrightarrow{AM}=({2\sqrt{2}-2})\overrightarrow{ON}$,設(shè)動點M的軌跡為曲線C.
(1)求動點M的軌跡曲線C的方程;
(2)若直線l與曲線C相交于不同的兩點P、Q且滿足以PQ為直徑的圓過坐標(biāo)原點O,求線段PQ長度的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案