20.在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=1+2i.

分析 利用復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是Z(1,-2),∴z=1-2i.
則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=1+2i.
故答案為:1+2i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{4}+{y^2}=1$,點(diǎn)P是橢圓C上任意一點(diǎn),且點(diǎn)M滿(mǎn)足$\left\{\begin{array}{l}{x_M}=2λ{(lán)x_P}\\{y_M}=λ{(lán)y_P}\end{array}\right.$(λ>1,λ是常數(shù)).當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),點(diǎn)M形成的曲線(xiàn)為Cλ
(Ⅰ)求曲線(xiàn)Cλ的軌跡方程;
(Ⅱ)過(guò)曲線(xiàn)Cλ上點(diǎn)M做橢圓C的兩條切線(xiàn)MA和MB,切點(diǎn)分別為A,B.
①若切點(diǎn)A的坐標(biāo)為(x1,y1),求切線(xiàn)MA的方程;
②當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí),是否存在定圓恒與直線(xiàn)AB相切?若存在,求圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某宣傳部門(mén)網(wǎng)站為弘揚(yáng)社會(huì)主義思想文化,開(kāi)展了以核心價(jià)值觀(guān)為主題的系列宣傳活動(dòng),并以“社會(huì)主義核心價(jià)值觀(guān)”作為關(guān)鍵詞便于網(wǎng)民搜索.此后,該網(wǎng)站的點(diǎn)擊量每月都比上月增長(zhǎng)50%,那么4個(gè)月后,該網(wǎng)站的點(diǎn)擊量和原來(lái)相比,增長(zhǎng)為原來(lái)的( 。
A.2倍以上,但不超過(guò)3倍B.3倍以上,但不超過(guò)4倍
C.4倍以上,但不超過(guò)5倍D.5倍以上,但不超過(guò)6倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.不等式組$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面區(qū)域?yàn)棣,若直線(xiàn)ax-y+a+1=0與Ω有公共點(diǎn),則實(shí)數(shù)a的最小值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0.
(1)當(dāng)a=2,$m=\frac{5}{4}$時(shí),求b、c的值;
(2)若角A為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,將不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域繞x軸旋轉(zhuǎn)一周所形成的幾何體的表面積是( 。
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知三棱柱ABC-A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點(diǎn),N在線(xiàn)段AB上,且AN=2NB,點(diǎn)P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1
(2)當(dāng)$\frac{CP}{P{C}_{1}}$為何值時(shí),有PN∥平面BMC1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)$f(x)=sin({x+\frac{π}{4}})+cos({x-\frac{π}{4}})$,則( 。
A.$f(x)=-f({x+\frac{π}{2}})$B.$f(x)=f({-x+\frac{π}{2}})$C.$f(x)•f({x+\frac{π}{2}})=1$D.$f(x)=-f({-x+\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,則tanα等于( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案