相關習題
 0  239219  239227  239233  239237  239243  239245  239249  239255  239257  239263  239269  239273  239275  239279  239285  239287  239293  239297  239299  239303  239305  239309  239311  239313  239314  239315  239317  239318  239319  239321  239323  239327  239329  239333  239335  239339  239345  239347  239353  239357  239359  239363  239369  239375  239377  239383  239387  239389  239395  239399  239405  239413  266669 

科目: 來源: 題型:解答題

3.某市為了引導居民合理用水,居民生活用水實行二級階梯水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中字母a的值,并求該組的頻率; 
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)m的值(保留兩位小數(shù)); 
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是$\widehat{y}$=2x+33,若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知函數(shù)f(x)=log2x,g(x)=x2,則函數(shù)y=g(f(x))-x零點的個數(shù)為3.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若拋物線y=ax2(a>0)上任意一點到x軸距離比到焦點的距離小1,則實數(shù)a的值為$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.在△ABC中,∠BAC的平分線交BC邊于D,若AB=2,AC=1,則△ABD面積的最大值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目: 來源: 題型:解答題

19.在平面直角坐標系xOy中,橢圓C1=$\frac{x^2}{a^2}+\frac{y^2}{b^2}$1(a>b>0)上任意一點到點P(-1,0)的最小距離為1,且橢圓C的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)若直線l與橢圓C交于點M、N,且△MON的面積為$\sqrt{3}$,問|OM|2+|ON|2是否為定值?若是,求出該定值,并求出sin∠MON的最小值;若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知數(shù)列{an}的奇數(shù)項成等差數(shù)列,偶數(shù)項成等比數(shù)列,且公差和公比都是2,若對滿足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令${b_n}=\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)$f(x)=Asin({ωx+φ})({A>0,ω>0,0<φ<\frac{π}{2}})$的部分圖象如圖所示,將f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象.
(I)求函數(shù)g(x)的解析式及單調遞增區(qū)間;
(II)在△x ABC中,角A,B,C的對邊分別為a,b,c,若(2a-c)cosB-bcosC=0且$f({\frac{A}{2}})=\frac{2}{3}$,求cos(A-B)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

16.O為坐標原點,點F是雙曲線2x2-2y2=1與拋物線y2=2px的公共焦點,點A在拋物線y2=2px上,M在線段AF上,且|AF|=2|MF|,則直線OM斜率的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知f(x)=ex與g(x)=ax+b的圖象交于P(x1,y1),Q(x2,y2)兩點.
(Ⅰ)求函數(shù)h(x)=f(x)-g(x)的最小值;
(Ⅱ)且PQ的中點為M(x0,y0),求證:f(x0)<a<y0

查看答案和解析>>

科目: 來源: 題型:解答題

14.某市衛(wèi)生防疫部門為了控制某種病毒的傳染,提供了批號分別為1,2,3,4,5的五批疫苗,供全市所轄的A,B,C三個區(qū)市民注射,每個區(qū)均能從中任選其中一個批號的疫苗接種.
(1)求三個區(qū)注射的疫苗批號中恰好有兩個區(qū)相同的概率;
(2)記A,B,C三個區(qū)選擇的疫苗批號的中位數(shù)為X,求 X的分布列及期望.

查看答案和解析>>

同步練習冊答案