相關(guān)習(xí)題
 0  239905  239913  239919  239923  239929  239931  239935  239941  239943  239949  239955  239959  239961  239965  239971  239973  239979  239983  239985  239989  239991  239995  239997  239999  240000  240001  240003  240004  240005  240007  240009  240013  240015  240019  240021  240025  240031  240033  240039  240043  240045  240049  240055  240061  240063  240069  240073  240075  240081  240085  240091  240099  266669 

科目: 來源: 題型:選擇題

15.已知集合A={x∈N|-2<x<4},$B=\{x|\frac{1}{2}≤{2^x}≤4\}$,則A∩B=( 。
A.{x|-1≤x≤2}B.{-1,0,1,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標(biāo)方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=2lnx-2mx+x2(m>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)m≥$\frac{{3\sqrt{2}}}{2}$時,若函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的圖象與x軸交于A,B兩點,其橫坐標(biāo)分別為x1,x2(x1<x2),線段AB的中點的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx-cx2-bx零的點,求證:(x1-x2)h'(x0)≥-$\frac{2}{3}$+ln2.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,點C在以AB為直徑的圓O上,PA垂直于圓O所在的平面,G為△AOC的重心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A-OP-G的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數(shù)恰好是數(shù)列{an}的前n項和Sn
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足${b_n}=\frac{{{2^{a_n}}}}{{({{2^{a_n}}-1})({{2^{{a_{n+1}}}}-1})}}$,記數(shù)列{bn}的前n項和為Tn,求證:Tn<1.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A-BCD的外接球,BC=3,AB=2$\sqrt{3}$,點E在線段BD上,且BD=3BE,過點E作球O的截面,則所得截面圓面積的取值范圍是[2π,4π].

查看答案和解析>>

科目: 來源: 題型:填空題

9.在△ABC中,角A,B,C的對邊分別為a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面積為$4\sqrt{3}$,則b+c的值為$4\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$且z=2x-y的最大值為a,則$\int_0^π{a{{cos}^2}}\frac{x}{2}dx$=3π.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知$\overrightarrow a=({1,λ}),\overrightarrow b=({2,1})$,若向量$2\overrightarrow a+\overrightarrow b$與$\overrightarrow c=({8,6})$共線,則$\overrightarrow a$在$\overrightarrow b$方向上的投影為$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)滿足f(x+2)=2f(x),且當(dāng)x∈[2,4]時,$f(x)=\left\{\begin{array}{l}-{x^2}+4x,2≤x≤3\\ \frac{{{x^2}+2}}{x},3<x≤4\end{array}\right.$,g(x)=ax+1,對?x1∈[-2,0],?x2∈[-2,1],使得g(x2)=f(x1),則實數(shù)a的取值范圍為(  )
A.$({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$B.$[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$C.(0,8]D.$({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$

查看答案和解析>>

同步練習(xí)冊答案