相關(guān)習(xí)題
 0  240408  240416  240422  240426  240432  240434  240438  240444  240446  240452  240458  240462  240464  240468  240474  240476  240482  240486  240488  240492  240494  240498  240500  240502  240503  240504  240506  240507  240508  240510  240512  240516  240518  240522  240524  240528  240534  240536  240542  240546  240548  240552  240558  240564  240566  240572  240576  240578  240584  240588  240594  240602  266669 

科目: 來源: 題型:解答題

19.已知集合A={x|x2-x-2≤0},集合B={x|m≤x<m+5,m∈R}.
(Ⅰ)若m=0,求A∩B.
(Ⅱ)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知冪函數(shù)f(x)=(n2+2n-2)${x}^{{n}^{2}-3n}$(n∈Z)的圖象關(guān)于y軸對稱,且在(0,+∞)上時(shí)減函數(shù),則n的值為1.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知數(shù)列{an}中,a1=1,n≥2且n∈N*時(shí),an=an-1+2n-1,依次計(jì)算a2,a3,a4后,猜想an的表達(dá)式是n2

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知復(fù)數(shù)z=a+bi,且|z-2|=1,則$\frac{a}$的最大值為(  )
A.3B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.用反證法證明命題:“已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1”時(shí),其中假設(shè)正確的是( 。
A.方程x2+ax+b=0的兩根的絕對值中只有一個(gè)小于1
B.方程x2+ax+b=0的兩根的絕對值至少有一個(gè)小于1
C.方程x2+ax+b=0的兩根的絕對值都大于或等于1
D.方程x2+ax+b=0的兩根的絕對值至少有一個(gè)大于或等于1

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知集合A={1,2,3,4,5},B={3,4,5,6,7},則圖中陰影部分表示的集合為( 。
A.{1,2,3,4,5}B.{3,4,5,6,7}C.{1,2,3,4,5,6,7}D.{3,4,5}

查看答案和解析>>

科目: 來源: 題型:填空題

13.在(3x+2y-1)10的展開式中,不含y的所有項(xiàng)的系數(shù)和為210

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知函數(shù)y=xex+x2+2x+a恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,$\frac{1}{e}$+1]B.(-∞,$\frac{1}{e}$+1)C.($\frac{1}{e}$+1,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≥0}\\{x-2y+2≥0}\\{2x-y-4≤0}\end{array}\right.$,則z=x2+y2+2y的取值范圍為( 。
A.[$\frac{25}{4}$,8]B.[$\frac{31}{5}$,$\frac{212}{9}$]C.[8,$\frac{212}{9}$]D.[$\frac{31}{5}$,8]

查看答案和解析>>

科目: 來源: 題型:選擇題

10.在平面直角坐標(biāo)系內(nèi),區(qū)域M滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤1\end{array}$區(qū)域N滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤sinx\end{array}$則向區(qū)域M內(nèi)投一點(diǎn),落在區(qū)域N內(nèi)的概率是( 。
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案