相關(guān)習(xí)題
 0  240692  240700  240706  240710  240716  240718  240722  240728  240730  240736  240742  240746  240748  240752  240758  240760  240766  240770  240772  240776  240778  240782  240784  240786  240787  240788  240790  240791  240792  240794  240796  240800  240802  240806  240808  240812  240818  240820  240826  240830  240832  240836  240842  240848  240850  240856  240860  240862  240868  240872  240878  240886  266669 

科目: 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{3}+t}\\{y=3+2t}\end{array}}\right.(t$為參數(shù)),以原點(diǎn)o為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為$ρ=2\sqrt{3}cosθ$.
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于點(diǎn)A,B,若點(diǎn)P的坐標(biāo)為$P(\sqrt{3},3)$,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.下列參數(shù)方程能與方程y2=x表示同一曲線的是( 。
A.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t為參數(shù))
B.$\left\{{\begin{array}{l}{x={{sin}^2}t}\\{y=sint}\end{array}}\right.$(t為參數(shù))
C.$\left\{\begin{array}{l}x=\frac{1-cos2t}{1+cos2t}\\ y=tant\end{array}\right.$(t為參數(shù))
D.$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$(t為參數(shù))

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知直線$l:\sqrt{3}x+y-2\sqrt{3}=0$與圓C:x2+y2=4相交于A,B兩點(diǎn).
(1)求|AB|;
(2)求弦AB所對圓心角的大小.

查看答案和解析>>

科目: 來源: 題型:填空題

15.若“?x∈[$\frac{1}{2}$,2],使得2x2-λx+1<0成立”是假命題,則實(shí)數(shù)λ的取值范圍為(-∞,2$\sqrt{2}$].

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知a,b,c是△ABC的三邊,a=4,b∈(4,6),sin2A=sinC,則c的取值范圍為($4\sqrt{2}$,2$\sqrt{10}$).

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+2ax+c
(1)若f(x)=f(-2-x),f(0)=-4.求f(x)在[3,+∞)上的最小值:
(2)若對于任意x∈[1,1+a],f(x)>$\frac{9}{4}$x-a2+c恒成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t\end{array}$(t∈R).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2cos 2θ+4ρ2sin2θ=3.
(1)求出直線l的普通方程及曲線C1的直角坐標(biāo)方程;
(2)若直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)C是曲線C1上與A,B不重合的一點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的方程為$ρ=\frac{36}{{4\sqrt{3}sinθ-12cosθ-ρ}}$,定點(diǎn)M(6,0),點(diǎn)N是曲線C1上的動點(diǎn),Q為MN的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的直角坐標(biāo)方程;
(2)已知直線l與x軸的交點(diǎn)為P,與曲線C2的交點(diǎn)為A,B,若AB的中點(diǎn)為D,求|PD|的長.

查看答案和解析>>

科目: 來源: 題型:解答題

10.在平面直角坐標(biāo)xOy中,已知圓C1:x2+y2=4,圓C2:(x-2)2+y2=4.
(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別求圓C1,C2的極坐標(biāo)方程;
(2)求圓C1與C2的公共弦的參數(shù)方程.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知(x+2)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)試求a0和Sn=$\sum_{i=1}^{n}$ai;
(2)試比較Sn與(n-2)3n+2n2

查看答案和解析>>

同步練習(xí)冊答案