相關(guān)習(xí)題
 0  249491  249499  249505  249509  249515  249517  249521  249527  249529  249535  249541  249545  249547  249551  249557  249559  249565  249569  249571  249575  249577  249581  249583  249585  249586  249587  249589  249590  249591  249593  249595  249599  249601  249605  249607  249611  249617  249619  249625  249629  249631  249635  249641  249647  249649  249655  249659  249661  249667  249671  249677  249685  266669 

科目: 來(lái)源: 題型:解答題

9.某車(chē)間在兩天內(nèi),每天生產(chǎn)10件某產(chǎn)品,其中第一天、第二天分別生產(chǎn)了1件、2件次品,而質(zhì)檢部每天要在生產(chǎn)的10件產(chǎn)品中隨意抽取4件進(jìn)行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天的產(chǎn)品不能通過(guò).
(I)求兩天全部通過(guò)檢查的概率;
(Ⅱ)若廠內(nèi)對(duì)該車(chē)間生產(chǎn)的產(chǎn)品質(zhì)量采用獎(jiǎng)懲制度,兩天全不通過(guò)檢查罰300元,通過(guò)1天,2天分別獎(jiǎng)300元、900元.求該車(chē)間在這兩天內(nèi)得到獎(jiǎng)金X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.函數(shù)f(x)=|2x-a|在(2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(-∞,4].

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.求證:兩個(gè)數(shù)的最大公約數(shù)的所有約數(shù),都是這兩個(gè)數(shù)的公約數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.當(dāng)x∈[-1,t]時(shí),函數(shù)f(x)=|x-2|+|5-x|的值域?yàn)閇3,9],則實(shí)數(shù)t的取值范圍是( 。
A.[2,8]B.[2,4]C.[4,8]D.[-1,5]

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x2+2x
(1)求f(2)+g(2)的值;
(2)求f(x)+g(x)的解析式;
(3)求f(x)的解析式.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知f(x)=x2-2x-3,等差數(shù)列{an}中,a1=f(x-1),a${\;}_{2}=-\frac{3}{2}$,a3=f(x)
求:(1)x的值;
(2)通項(xiàng)an

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{ax+b}{1-{x}^{2}}$是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{4}{3}$,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=-$\frac{1}{6}$x3+x2-aex+2.
(1)若a=1,求曲線y=f(x)在x=0處的切線方程;
(2)設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)函數(shù)為f″(x).若在(a,b)上,f″(x)>0,則稱函數(shù)在上為“凹函數(shù)”.若函數(shù)f(x)=-$\frac{1}{6}$x3+x2-aex+2是R上的“凹函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.如圖,一人在某山腳B的正西方向A處測(cè)得山頂C的仰角為45°,再向正東方向行進(jìn)(3-$\sqrt{3}$)百米后到D,測(cè)得山頂C在D的北偏東30°,則該山BC的高度為( 。┌倜祝
A.1B.2C.3D.4

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.已知f(x)=t2+2+2tx(t≠0).則$\frac{f(cosθ)}{f(sinθ)}$的范圍[1-$\frac{\sqrt{2}}{2}$,1+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案