科目: 來源: 題型:
【題目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1) 求向量b+c的模的最大值;
(2) 若α=,且a⊥(b+c),求cos β的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a,b都是非零向量,且a與b不共線.
(1求證:A,B,D三點(diǎn)共線;
(2) 若ka+b和a+kb共線,求實(shí)數(shù)k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和的距離之和的最小值為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見如表:
(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?
(參考公式和計(jì)算結(jié)果:)
(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,短軸的兩個(gè)端點(diǎn)分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長(zhǎng)為2,過點(diǎn)的直線與橢圓相交于、兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,短軸的兩個(gè)端點(diǎn)分別為,.
(1)若為等邊三角形,求橢圓的方程;
(2)若橢圓的短軸長(zhǎng)為2,過點(diǎn)的直線與橢圓相交于、兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,平面平面,,.設(shè)分別為中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)試問在線段上是否存在點(diǎn),使得過三點(diǎn)的平面內(nèi)的任一條直線都與平面平行?
若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】 已知函數(shù)(其中為參數(shù)).
(1)當(dāng)時(shí),證明:不是奇函數(shù);
(2)如果是奇函數(shù),求實(shí)數(shù)的值;
(3)已知,在(2)的條件下,求不等式的解集.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,cos C=.
(1)若·=,求c的最小值;
(2)設(shè)向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com