科目: 來源: 題型:
【題目】函數(shù)f(x)=x2+ax+3.
(1)當x∈R時,f(x)≥a恒成立,求a的取值范圍.
(2)當x∈[﹣2,2]時,f(x)≥a恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(萬元)有以下統(tǒng)計資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費用y | 2 | 4 | 5 | 6 | 7 |
若由資料知y對x呈線性相關(guān)關(guān)系。試求:
(1)求; (2)線性回歸方程;
(3)估計使用10年時,維修費用是多少?
附:利用“最小二乘法”計算a,b的值時,可根據(jù)以下公式:
查看答案和解析>>
科目: 來源: 題型:
【題目】在四邊形ABCD中,已知AB=9,BC=6, =2 .
(1)若四邊形ABCD是矩形,求 的值;
(2)若四邊形ABCD是平行四邊形,且 =6,求 與 夾角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知各項均為正數(shù)的等比數(shù)列{an}中,a2=4,a4=16.
(1)求公比q;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x+ )+cosx,x∈R,
(1)求函數(shù)f(x)的最大值,并寫出當f(x)取得最大值時x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)直線與圓交于M、N兩點,且M、N關(guān)于直線對稱.
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點,是否存在實數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】正項數(shù)列{an}前n項和為Sn , 且 (n∈N+)
(1)求數(shù)列{an}的通項公式;
(2)若 ,數(shù)列{bn}的前n項和為Tn , 證明:T2n﹣1>1>T2n(n∈N+).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com