相關(guān)習(xí)題
 0  257155  257163  257169  257173  257179  257181  257185  257191  257193  257199  257205  257209  257211  257215  257221  257223  257229  257233  257235  257239  257241  257245  257247  257249  257250  257251  257253  257254  257255  257257  257259  257263  257265  257269  257271  257275  257281  257283  257289  257293  257295  257299  257305  257311  257313  257319  257323  257325  257331  257335  257341  257349  266669 

科目: 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求;

(2)設(shè)圓軸的負(fù)半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實行二級階梯式水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過1000萬?

相關(guān)公式:.

查看答案和解析>>

科目: 來源: 題型:

【題目】解答題
(1)在等比數(shù)列{an}中,a5=162,公比q=3,前n項和Sn=242,求首項a1和項數(shù)n.
(2)有四個數(shù),其中前三個數(shù)成等比數(shù)列,其積為216,后三個數(shù)成等差數(shù)列,其和為36,求這四個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點為,點.若動點與兩定點所構(gòu)成三角形的周長為6.

(Ⅰ) 求動點的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點,當(dāng),且位于直線的兩側(cè)時,證明: .

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)正項數(shù)列{an}的前n項和是Sn , 若{an}和{ }都是等差數(shù)列,且公差相等,則a1=

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求;

(2)設(shè)圓軸的負(fù)半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】△ABC的三個內(nèi)角A、B、C的對邊分別是a,b,c,給出下列命題: ①若sinBcosC>﹣cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號是 . (注:把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), 處取得極值,且,曲線處的切線與直線垂直.

(Ⅰ)求的解析式;

(Ⅱ)證明關(guān)于的方程至多只有兩個實數(shù)根(其中的導(dǎo)函數(shù), 是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以為極點, 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于兩點,點,求的值.

查看答案和解析>>

同步練習(xí)冊答案