科目: 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S. ①當 時,S為四邊形
②截面在底面上投影面積恒為定值
③不存在某個位置,使得截面S與平面A1BD垂直
④當 時,S與C1D1的交點滿足C1R1=
其中正確命題的個數(shù)為 ( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且BE⊥PD.
(1)求異面直線PA與CD所成的角的大;
(2)求證:BE⊥平面PCD;
(3)求二面角A﹣PD﹣B的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質(zhì)品數(shù),其中表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù)(千冊) | 2 | 3 | 4 | 5 | 8 |
單冊成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計算結(jié)果精確到0.1);
印刷冊數(shù)(千冊) | 2 | 3 | 4 | 5 | 8 | |
單冊成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據(jù)市場調(diào)查,新需求量為8千冊(概率0.8)或10千冊(概率0.2),若印刷廠以每冊5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊能獲得更多利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=ax﹣3.
(1)當a=l時,確定函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上的單調(diào)性;
(2)若對任意x∈[0,4],總存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴重.市環(huán)保研究所對近期每天的空氣污染情況進行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關(guān)系為f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若a= ,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,設(shè)F1、F2分別為橢圓的左、右焦點,橢圓上任意一個動點M到左焦點F1的距離的最大值 為 +1 (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線L的斜率為k,且過左焦點F1 , 與橢圓C相交于P、Q兩點,若△PQF2的面積為 ,試求k的值及直線L的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線(其中為參數(shù), 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求的直角坐標方程,并求的焦點的直角坐標;
(2)已知點,若直線與相交于兩點,且,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com