相關(guān)習(xí)題
 0  257224  257232  257238  257242  257248  257250  257254  257260  257262  257268  257274  257278  257280  257284  257290  257292  257298  257302  257304  257308  257310  257314  257316  257318  257319  257320  257322  257323  257324  257326  257328  257332  257334  257338  257340  257344  257350  257352  257358  257362  257364  257368  257374  257380  257382  257388  257392  257394  257400  257404  257410  257418  266669 

科目: 來源: 題型:

【題目】問題“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可變?yōu)椋?x+( x=1,考察函數(shù)f(x)=( x+( x可知f(2)=1,且函數(shù)f(x)在R上單調(diào)遞減,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx﹣4>2lg2﹣x的解集為

查看答案和解析>>

科目: 來源: 題型:

【題目】對(duì)于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )+f( )等于(
A.1
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在(﹣1,1)上的函數(shù)f(x)是奇函數(shù),且函數(shù)f(x)在(﹣1,1)上是減函數(shù),則滿足f(1﹣a)+f(1﹣a2)<0的實(shí)數(shù)a的取值范圍是(
A.[0,1]
B.(﹣2,1)
C.[﹣2,1]
D.(0,1)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時(shí),①求的值;②試問直線是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如果一個(gè)幾何體的主視圖與左視圖都是全等的長(zhǎng)方形,邊長(zhǎng)分別是4cm與2cm如圖所示,俯視圖是一個(gè)邊長(zhǎng)為4cm的正方形.
(1)求該幾何體的全面積.
(2)求該幾何體的外接球的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時(shí),g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對(duì)任意的x∈R都有g(shù)(x)=g(﹣x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有 成立.當(dāng) 時(shí),f(x)=x3﹣3x.若關(guān)于x的不等式g[f(x)]≤g(a2﹣a+2)對(duì)x∈[﹣ , ]恒成立,則a的取值范圍是(
A.a∈R
B.0≤a≤1
C.
D.a≤0或a≥1

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)=x2﹣2x+2在區(qū)間(0,4]的值域?yàn)椋?/span>
A.(2,10]
B.[1,10]
C.(1,10]
D.[2,10]

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線l經(jīng)過直線3x+4y﹣2=0與直線2x+y+2=0的交點(diǎn)P,且垂直于直線x﹣2y﹣1=0.求:
(Ⅰ)直線l的方程;
(Ⅱ)直線l與兩坐標(biāo)軸圍成的三角形的面積S.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域,其中三角形區(qū)域為生活區(qū),四邊形區(qū)域為教學(xué)區(qū), 為學(xué)校的主要道路(不考慮寬度). .

(1)求道路的長(zhǎng)度;(2)求生活區(qū)面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案