相關習題
 0  257400  257408  257414  257418  257424  257426  257430  257436  257438  257444  257450  257454  257456  257460  257466  257468  257474  257478  257480  257484  257486  257490  257492  257494  257495  257496  257498  257499  257500  257502  257504  257508  257510  257514  257516  257520  257526  257528  257534  257538  257540  257544  257550  257556  257558  257564  257568  257570  257576  257580  257586  257594  266669 

科目: 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】袋子中放有大小和形狀相同的四個小球,它們的標號分別為1、2、3、4,現(xiàn)從袋中不放回地隨機抽取兩個小球,記第一次取出的小球的標號為a,第二次取出的小球的標號為b,記事件A為“a+b≥6“.
(1)列舉出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在區(qū)間[0,2]內(nèi)任取兩個實數(shù)x,y,求事件“x2+y2≥12P(A)“的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在棱臺中, 分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點, ).

(1)設中點為, ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,過點作直線交圓兩點,分別過兩點作圓的切線,當兩條切線相交于點時,則點的軌跡方程為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知X是離散型隨機變量,P(X=1)= ,P(X=a)= ,E(X)= ,則D(2X﹣1)等于( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集為M.
(1)求M;
(2)當a,b∈M時,證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ,求 的值;
(2)已知函數(shù)f(x)=2( + ﹣2m2﹣1,若函數(shù)f(x)在[0, ]上有零點,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線C1 (α為參數(shù))與曲線C2:ρ=4sinθ
(1)寫出曲線C1的普通方程和曲線C2的直角坐標方程;
(2)求曲線C1和C2公共弦的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照 , , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.

查看答案和解析>>

同步練習冊答案