科目: 來源: 題型:
【題目】橢圓C: 的長軸是短軸的兩倍,點在橢圓上.不過原點的直線l與橢圓相交于A、B兩點,設直線OA、l、OB的斜率分別為、、,且、、恰好構成等比數列,記△的面積為S.
(1)求橢圓C的方程.
(2)試判斷是否為定值?若是,求出這個值;若不是,請說明理由?
(3)求S的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法中,正確的是 .
①任取x>0,均有3x>2x;
②當a>0,且a≠1時,有a3>a2;
③y=( )﹣x是減函數;
④函數f(x)在x>0時是增函數,x<0也是增函數,所以f(x)是增函數;
⑤若函數f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
⑥y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線y=x2﹣6x+5與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x﹣y+a=0交于A,B兩點,且CA⊥CB求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑, 平面, , ,三棱錐的四個頂點都在球的球面上,則球的表面積為( ).
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,證明f(x)的圖象與x軸有2個交點;
(2)在(1)的條件下,是否存在m∈R,使得f(m)=﹣a成立時,f(m+3)為正數,若存在,證明你的結論,若不存在,請說明理由;
(3)若對x1 , x2∈R,且x1<x2 , f(x1)≠f(x2),方程f(x)= [f(x1)+f(x2)]有兩個不等實根,證明必有一個根屬于(x1 , x2).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
(1)若 ,且函數 在區(qū)間 上單調遞增,求實數a的范圍;
(2)若函數有兩個極值點 , 且存在 滿足 ,令函數 ,試判斷 零點的個數并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且2cosAcosC(1-tanAtanC)=1.
(1)求B的大。
(2)若b=,求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com