相關習題
 0  257994  258002  258008  258012  258018  258020  258024  258030  258032  258038  258044  258048  258050  258054  258060  258062  258068  258072  258074  258078  258080  258084  258086  258088  258089  258090  258092  258093  258094  258096  258098  258102  258104  258108  258110  258114  258120  258122  258128  258132  258134  258138  258144  258150  258152  258158  258162  258164  258170  258174  258180  258188  266669 

科目: 來源: 題型:

【題目】設f(x)=etx1﹣tlnx,(t>0)
(Ⅰ)若t=1,證明x=1是函數(shù)f(x)的極小值點;
(Ⅱ)求證:f(x)≥0.

查看答案和解析>>

科目: 來源: 題型:

【題目】判斷居民戶是否小康的一個重要指標是居民戶的年收入,某市從轄區(qū)內隨機抽取100個居民戶,對每個居民戶的年收入與年結余的情況進行分析,設第i個居民戶的年收入xi(萬元),年結余yi(萬元),經過數(shù)據處理的: =400, =100, =900, =2850.
(1)已知家庭的年結余y對年收入x具有線性相關關系,求線性回歸方程;
(2)若該市的居民戶年結余不低于5萬,即稱該居民戶已達小康生活,請預測居民戶達到小康生活的最低年收入應為多少萬元? 附:在y=bx+a中,b= ,a= ,其中 , 為樣本平均值.

查看答案和解析>>

科目: 來源: 題型:

【題目】宿州某中學N名教師參加“低碳節(jié)能你我他”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

m

p

75

25


(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機抽取2人參加學校之間的宣傳交流活動,求恰有1人在第3組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系,為極點, 軸正半軸為極軸建立極坐標系的極坐標方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于兩點, 是圓上不同于的任意一點

(1)求圓心的極坐標;

(2)求點到直線的距離的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣(a+1)lnx﹣ ,其中a∈R.
(Ⅰ)求證:當a=1時,函數(shù)y=f(x)沒有極值點;
(Ⅱ)求函數(shù)y=f(x)的單調增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x+c(c∈R)的一個零點為1. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設 ,若g(t)=2,求實數(shù)t的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某鋼廠打算租用兩種型號的火車車皮運輸900噸鋼材,兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬元/個和2.4萬元/個,鋼廠要求租車皮總數(shù)不超過21個,且型車皮不多于型車皮7個,分別用,表示租用,兩種車皮的個數(shù).

1)用,列出滿足條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

2)分別租用,兩種車皮的個數(shù)是多少時,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為菱形, 為正三角形,且分別為的中點, 平面, 平面

1)求證: 平面

2)求與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點.

1求證:平面AB1E平面B1BCC1;

2求證:平面AB1E.

查看答案和解析>>

科目: 來源: 題型:

【題目】某鋼廠打算租用,兩種型號的火車車皮運輸900噸鋼材,,兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬元/個和2.4萬元/個,鋼廠要求租車皮總數(shù)不超過21個,且型車皮不多于型車皮7個,分別用表示租用,兩種車皮的個數(shù).

1)用列出滿足條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

2)分別租用,兩種車皮的個數(shù)是多少時,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

同步練習冊答案