相關(guān)習(xí)題
 0  258675  258683  258689  258693  258699  258701  258705  258711  258713  258719  258725  258729  258731  258735  258741  258743  258749  258753  258755  258759  258761  258765  258767  258769  258770  258771  258773  258774  258775  258777  258779  258783  258785  258789  258791  258795  258801  258803  258809  258813  258815  258819  258825  258831  258833  258839  258843  258845  258851  258855  258861  258869  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為實數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,且經(jīng)過點M(﹣3,﹣1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:x﹣y﹣2=0與橢圓C交于A,B兩點,點P為橢圓C上一動點,當(dāng)△PAB的面積最大時,求點P的坐標(biāo)及△PAB的最大面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某經(jīng)銷商從沿海城市水產(chǎn)養(yǎng)殖廠購進一批某海魚,隨機抽取50條作為樣本進行統(tǒng)計,按海魚重量(克)得到如圖的頻率分布直方圖:
(Ⅰ)若經(jīng)銷商購進這批海魚100千克,試估計這批海魚有多少條(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);
(Ⅱ)根據(jù)市場行情,該海魚按重量可分為三個等級,如下表:

等級

一等品

二等品

三等品

重量(g)

[165,185]

[155,165)

[145,155)

若經(jīng)銷商以這50條海魚的樣本數(shù)據(jù)來估計這批海魚的總體數(shù)據(jù),視頻率為概率.現(xiàn)從這批海魚中隨機抽取3條,記抽到二等品的條數(shù)為X,求x的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖四邊形ABCD為邊長為2的菱形,G為AC與BD交點,平面BED⊥平面ABCD,BE=2,AE=2
(Ⅰ)證明:BE⊥平面ABCD;
(Ⅱ)若∠ABC=120°,求直線EG與平面EDC所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (a,b∈R)的圖象過點P(1,f(1)),且在點P處的切線方程為y=3x﹣8.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}中,a1=2,an+1=2﹣ (n=1,2,3,…).
(Ⅰ)求a2 , a3 , a4的值,猜想出數(shù)列的通項公式an;
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目: 來源: 題型:

【題目】在已知函數(shù),(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為

(1)求的解析式;

(2)當(dāng)時,求的值域;

(3)求上的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

【題目】某購物網(wǎng)站在2017年11月開展“全部6折”促銷活動,在11日當(dāng)天購物還可以再享受“每張訂單金額(6折后〕滿300元時可減免100元”.小淘在11日當(dāng)天欲購入原價48元(單價)的商品共42件,為使花錢總數(shù)最少,他最少需要下的訂單張數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知橢圓C1 +y2=1,雙曲線C2 =1(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為( )

A.9
B.5
C.
D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形是平行四邊形, 平面, ,

的中點.

(1)求證: 平面;

(2)求證:平面平面

(3)求多面體的體積.

查看答案和解析>>

同步練習(xí)冊答案