相關(guān)習(xí)題
 0  259632  259640  259646  259650  259656  259658  259662  259668  259670  259676  259682  259686  259688  259692  259698  259700  259706  259710  259712  259716  259718  259722  259724  259726  259727  259728  259730  259731  259732  259734  259736  259740  259742  259746  259748  259752  259758  259760  259766  259770  259772  259776  259782  259788  259790  259796  259800  259802  259808  259812  259818  259826  266669 

科目: 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 數(shù)列{bn},{cn}滿足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項公式;
(2)若存在實(shí)數(shù)λ,使得對一切n∈N*,有bn≤λ≤cn , 求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本題滿分12分)如圖,在四棱錐PABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BADPAAD=2,ABBC=1.

(1)求點(diǎn)D到平面PBC的距離;

(2)設(shè)Q是線段BP上的動點(diǎn),當(dāng)直線CQDP所成的角最小時,求二面角B-CQ-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某漁業(yè)公司年初用81萬元購買一艘捕魚船,第一年各種費(fèi)用為1萬元,以后每年都增加2萬元,每年捕魚收益30萬元.

問第幾年開始獲利?

若干年后,有兩種處理方案:方案一:年平均獲利最大時,以46萬元出售該漁船;

方案二:總純收入獲利最大時,以10萬元出售該漁船問:哪一種方案合算?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) 的圖象過點(diǎn)。

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù) ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位長度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到的圖像.

(1)求的單調(diào)遞增區(qū)間;

(2)若對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列滿足,若為單調(diào)遞增的等差數(shù)列,其前項和為,則__________;若為單調(diào)遞減的等比數(shù)列,其前項和為,則__________.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若存在實(shí)數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,若存在實(shí)數(shù),使得對于任意的,都有,則稱數(shù)列為“數(shù)列”( )

A. 是等差數(shù)列,且首項,則數(shù)列是“數(shù)列”

B. 是等差數(shù)列,且公差,則數(shù)列是“數(shù)列”

C. 是等比數(shù)列,也是“數(shù)列”,則數(shù)列的公比滿足

D. 是等比數(shù)列,且公比滿足,則數(shù)列是“數(shù)列”

查看答案和解析>>

科目: 來源: 題型:

【題目】已知對任意平面向量,把繞其起點(diǎn)沿逆時針方向旋轉(zhuǎn)角得到向量,,叫做把點(diǎn)繞點(diǎn)逆時針方向旋轉(zhuǎn)角得到點(diǎn).

(1)已知平面內(nèi)點(diǎn),點(diǎn),把點(diǎn)繞點(diǎn)順時針方向旋轉(zhuǎn)后得到點(diǎn),求點(diǎn)的坐標(biāo);

(2)設(shè)平面內(nèi)曲線上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時針方向旋轉(zhuǎn)后得到的點(diǎn)的軌跡方程是曲線,求原來曲線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本題滿分12分)袋中裝有黑色球和白色球共7個,從中任取2個球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個球在每一次被摸出的機(jī)會都是等可能的,用X表示摸球終止時所需摸球的次數(shù).

(1)求隨機(jī)變量X的分布列和均值E(X);

(2)求甲摸到白色球的概率.

查看答案和解析>>

同步練習(xí)冊答案