科目: 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,點C在圓上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延長線與AB的延長線交于點E.若EB=6,EC=6 ,則BC的長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實數(shù)a的取值范圍為( )
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,且a1 , a3 , a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項的和,則 (n∈N+)的最小值為( )
A.4
B.3
C.2 ﹣2
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對稱圖形
C. 若是f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點,則()=0
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當a=﹣ 時,求函數(shù)f(x)的極值;
(Ⅱ)當a>0時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當x∈[1,+∞)時,若y=f(x)圖象上的點都在 所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e= .
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設(shè)λ= ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com