相關(guān)習(xí)題
 0  260080  260088  260094  260098  260104  260106  260110  260116  260118  260124  260130  260134  260136  260140  260146  260148  260154  260158  260160  260164  260166  260170  260172  260174  260175  260176  260178  260179  260180  260182  260184  260188  260190  260194  260196  260200  260206  260208  260214  260218  260220  260224  260230  260236  260238  260244  260248  260250  260256  260260  260266  260274  266669 

科目: 來源: 題型:

【題目】設(shè)計如圖所示的四個電路圖,條件p:“開關(guān)S閉合”;條件q:“燈泡L亮”,則p是q的充分不必要條件的電路圖是__________

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時,f(x)=( 1x , 則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當(dāng)x∈(3,4)時,f(x)=( x3
其中所有正確命題的序號是

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=-x3+2ax2-3a2x(a∈R且a≠0).

(1)當(dāng)a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;

(2)當(dāng)a>0時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;

(3)當(dāng)x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:
(1)函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱;
(2)對x∈R,f( ﹣x)=f( +x)成立
(3)當(dāng)x∈(﹣ ,﹣ ]時,f(x)=log2(﹣3x+1),則f(2011)=( )
A.﹣5
B.﹣4
C.﹣3
D.﹣2

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分16分)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的容積為立方米,且.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為)千元.設(shè)該容器的建造費用為千元.

1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;

2)求該容器的建造費用最小時的

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)在區(qū)間上的最大、最小值;

2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+bln(x+1)在[0,+∞)上單調(diào)遞減,則b的取值范圍(
A.[0,+∞)
B.[﹣ ,+∞)
C.(﹣∞,0]
D.(﹣∞,﹣ ]

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+2在x=2處取得極值-14.

(1)求a,b的值;

(2)若f(x)≥kx在上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案