相關(guān)習(xí)題
 0  260663  260671  260677  260681  260687  260689  260693  260699  260701  260707  260713  260717  260719  260723  260729  260731  260737  260741  260743  260747  260749  260753  260755  260757  260758  260759  260761  260762  260763  260765  260767  260771  260773  260777  260779  260783  260789  260791  260797  260801  260803  260807  260813  260819  260821  260827  260831  260833  260839  260843  260849  260857  266669 

科目: 來源: 題型:

【題目】函數(shù)f(x)=2x﹣ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種, 方案一:每滿200元減50元:
方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、1個白球的甲箱,裝有2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機(jī)摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)

紅球個數(shù)

3

2

1

0

實(shí)際付款

半價

7折

8折

原價

(Ⅰ)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得半價優(yōu)惠的概率;
(Ⅱ)若某顧客購物金額為320元,用所學(xué)概率知識比較哪一種方案更劃算?

查看答案和解析>>

科目: 來源: 題型:

【題目】在如圖所示的四邊形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,記∠ABC=θ.
(Ⅰ)求用含θ的代數(shù)式表示DC;
(Ⅱ)求△BCD面積S的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)為奇函數(shù),函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x+1對稱.若g(1)=4.則f(﹣3)=

查看答案和解析>>

科目: 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,輸出S的值為(
A.ln4
B.ln5
C.ln 5﹣ln4
D.ln 4﹣ln 3

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2﹣ax.
(Ⅰ)若函數(shù)f(x)的圖象在x=0處的切線方程為y=2x+b,求a,b的值;
(Ⅱ)若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 =1的一個焦點(diǎn)為F(2,0),且離心率為
(1)求橢圓方程;
(2)過點(diǎn)M(3,0)作直線與橢圓交于A,B兩點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(K2= ,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為菱形,E為AC與BD的交點(diǎn),PA⊥平面ABCD,M為PA中點(diǎn),N為BC中點(diǎn).
(1)證明:直線MN∥平面PCD;
(2)若點(diǎn)Q為PC中點(diǎn),∠BAD=120°,PA= ,AB=1,求三棱錐A﹣QCD的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an+1=10an+1.
(1)證明數(shù)列{an+ }是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=lg(an+ ),Tn為數(shù)列{ }的前n項和,求證:Tn

查看答案和解析>>

同步練習(xí)冊答案