相關習題
 0  260671  260679  260685  260689  260695  260697  260701  260707  260709  260715  260721  260725  260727  260731  260737  260739  260745  260749  260751  260755  260757  260761  260763  260765  260766  260767  260769  260770  260771  260773  260775  260779  260781  260785  260787  260791  260797  260799  260805  260809  260811  260815  260821  260827  260829  260835  260839  260841  260847  260851  260857  260865  266669 

科目: 來源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)將輸出(x,y)值依次記為:(x1 , y1),(x2 , y2),…,(xn , yn),…,若程序運行中輸出一個數(shù)組是(x,﹣10),則數(shù)組中的x=(
A.16
B.32
C.64
D.128

查看答案和解析>>

科目: 來源: 題型:

【題目】設函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在以原點O為極點,以x軸正半軸為極軸,且與直角坐標系有相同的長度單位的極坐標系中,直線l的方程為ρsin(θ+ )=2
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ex(sinx+cosx)+a,g(x)=(a2﹣a+10)ex(a為常數(shù)).
(1)已知a=0,求曲線y=f(x)在(0,f(0))處的切線方程;
(2)當0≤x≤π時,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)﹣g(x2)|<13﹣e 成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 + =1兩焦點分別為F1、F2 , P是橢圓在第一象限弧上一點,并滿足 =1,過P作兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)若直線AB的斜率為 ,求△PAB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功.某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數(shù)為隨機變量X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】將一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為a,第二次出現(xiàn)的點數(shù)記為b,設兩條直線l1:ax+by=2與l2:x+2y=2平行的概率為P1 , 相交的概率為P2 , 則點P(36P1 , 36P2)與圓C:x2+y2=1098的位置關系是(
A.點P在圓C上
B.點P在圓C外
C.點P在圓C內(nèi)
D.不能確定

查看答案和解析>>

科目: 來源: 題型:

【題目】下列四個函數(shù)中,以π為最小正周期,且在區(qū)間( ,π)上為減函數(shù)的是(
A.y=cos2x
B.y=2|sinx|
C.
D.y=﹣cotx

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個單位長度,所得函數(shù)y=f(x)為偶函數(shù)時,則φ的一個值是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案