科目: 來源: 題型:
【題目】已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1, =2an+1(an+1)-an.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=,求數(shù)列{an·bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-5:不等式選講](10分)
已知函數(shù)f(x)=2|x-2|+3|x+3|.
(Ⅰ)解不等式:f(x)>15;
(Ⅱ)若函數(shù)f(x)的最小值為m,正實(shí)數(shù)a,b滿足4a+25b=m,求+的最小值,并求出此時(shí)a,b的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
平面直角坐標(biāo)系xOy中,射線l:y=x(x≥0),曲線C1的參數(shù)方程為 (α為參數(shù)),曲線C2的方程為x2+(y-2)2=4;以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. 曲線C3的極坐標(biāo)方程為ρ=8sin θ.
(Ⅰ)寫出射線l的極坐標(biāo)方程以及曲線C1的普通方程;
(Ⅱ)已知射線l與C2交于O,M,與C3交于O,N,求|MN|的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知函數(shù)f(x)=xln x-x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若x>0,f(x)+ax2≤0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1,F2,離心率為,直線y=x+b截得橢圓C的弦長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)(m,0)作圓x2+y2=1的切線,交橢圓C于點(diǎn)A,B,求|AB|的最大值,并求取得最大值時(shí)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】
近年來,隨著雙十一、雙十二等網(wǎng)絡(luò)活動(dòng)的風(fēng)靡,各大網(wǎng)商都想出了一系列的降價(jià)方案,以此來提高自己的產(chǎn)品利潤. 已知在2016年雙十一某網(wǎng)商的活動(dòng)中,某店家采取了兩種優(yōu)惠方案以供選擇:
方案一:購物滿400元以上的,超出400元的部分只需支出超出部分的x%;
方案二:購物滿400元以上的,可以參加電子抽獎(jiǎng)活動(dòng),即從1,2,3,4,5,6這6張卡牌中任取2張,將得到的數(shù)字相加,所得結(jié)果與享受優(yōu)惠如下:
數(shù)字和 | [3,4] | [5,7] | [8,9] | [10,11] |
實(shí)際付款 | 原價(jià) | 9折 | 8折 | 5折 |
(Ⅰ)若某顧客消費(fèi)了800元,且選擇方案二,求該顧客只需支付640元的概率;
(Ⅱ)若某顧客購物金額為500元,她選擇了方案二后,得到的數(shù)字之和為6,此時(shí)她發(fā)現(xiàn)使用方案一、二最后支付的金額相同,求x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的多面體中,底面ABCD為正方形,△GAD為等邊三角形,BF⊥平面ABCD,∠GDC=90°,點(diǎn)E是線段GC上除兩端點(diǎn)外的一點(diǎn),若點(diǎn)P為線段GD的中點(diǎn).
(Ⅰ)求證:AP⊥平面GCD;
(Ⅱ)求證:平面ADG∥平面FBC;
(Ⅲ)若AP∥平面BDE,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知△ABC中,角A,B,C所對的邊分別為a,b,c,且3a2+ab-2b2=0.
(Ⅰ)若B=,求sinC的值;
(Ⅱ)若sin A+3sin C=3sin B,求sinC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線E: (a>0,b>0)的漸近線方程為3x±4y=0,且過焦點(diǎn)垂直x軸的直線與雙曲線E相交弦長為,過雙曲線E中心的直線與雙曲線E交于A,B兩點(diǎn),在雙曲線E上取一點(diǎn)C(與A,B不重合),直線AC,BC 的斜率分別為k1,k2,則k1k2等于( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-1,過定點(diǎn)M(m,0)(m>0)作斜率為k的直線l交拋物線C于A,B兩點(diǎn),E是M點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),若直線AE和BE的斜率分別為k1,k2,則k1+k2=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com