相關(guān)習(xí)題
 0  263444  263452  263458  263462  263468  263470  263474  263480  263482  263488  263494  263498  263500  263504  263510  263512  263518  263522  263524  263528  263530  263534  263536  263538  263539  263540  263542  263543  263544  263546  263548  263552  263554  263558  263560  263564  263570  263572  263578  263582  263584  263588  263594  263600  263602  263608  263612  263614  263620  263624  263630  263638  266669 

科目: 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列四種說法中,正確的個數(shù)有

①命題均有的否定是:使得;

命題為真命題為真的必要不充分條件;

,使是冪函數(shù),且在上是單調(diào)遞增;

④不過原點的直線方程都可以表示成;

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的,得到曲線,在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點為曲線上的任意一點,求點到直線的距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為、,點為橢圓上任意一點,關(guān)于原點的對稱點為,有,且的最大值.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若關(guān)于軸的對稱點,設(shè)點,連接與橢圓相交于點,直線軸相交于點,試求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C的離心率為,橢圓的左,右焦點分別為F1,F2,點M為橢圓上的一個動點,MF1F2面積的最大值為,過橢圓外一點(m,0)(ma)且傾斜角為的直線l交橢圓于CD兩點.

1)求橢圓的方程;

2)若,求m的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】動圓M與圓F1x2+y2+6x+50外切,同時與圓F2x2+y26x910內(nèi)切.

1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;

2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4級中度污染

5級重度污染

6級嚴(yán)重污染

該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.

(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?

(Ⅱ)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費(fèi)用為1000元,空氣質(zhì)量等量等級為3級時每天需凈化空氣的費(fèi)用為2000元.若從這10天樣本中空氣質(zhì)量為1級、2級、3級的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用為3000元的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的,得到曲線,在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點為曲線上的任意一點,求點到直線的距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知變量xy滿足約束條件,

1)畫出上述不等式組所表示的平面區(qū)域;

2)求z2xy的最大值;

3)求z=(x+12+y42的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為,點為橢圓上任意一點,關(guān)于原點的對稱點為,有,且的最大值.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若關(guān)于軸的對稱點,設(shè)點,連接與橢圓相交于點,問直線軸是否交于一定點.如果是,求出該定點坐標(biāo);如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案