科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為13;圓弧C2過點A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調遞增區(qū)間;
(2)若且,設是函數(shù)的零點.
(i)證明:時存在唯一且;
(ii)若,記,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設直線和曲線交于兩點,求
查看答案和解析>>
科目: 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機遇, 決定開發(fā)生產一款大型電子設備, 生產這種設備的年固定成本為萬元, 每生產臺,需另投入成本(萬元), 當年產量不足臺時, (萬元); 當年產量不小于臺時 (萬元), 若每臺設備售價為萬元, 通過市場分析,該企業(yè)生產的電子設備能全部售完.
(1)求年利潤 (萬元)關于年產量(臺)的函數(shù)關系式;
(2)年產量為多少臺時 ,該企業(yè)在這一電子設備的生產中所獲利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,正方體的棱長為1,,為線段,上的動點,過點,,的平面截該正方體的截面記為,則下列命題正確的是________.
①當且時,為等腰梯形;
②當,分別為,的中點時,幾何體的體積為;
③當為中點且時,與的交點為,滿足;
④當且時, 的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面真角坐標系xOy中,曲線的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立根坐標系.曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線與曲線交于M,N兩點,直線OM和ON的斜率分別為和,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】基于移動網(wǎng)絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關系數(shù),,.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負半軸上.若(為原點),且,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com