相關(guān)習(xí)題
 0  264689  264697  264703  264707  264713  264715  264719  264725  264727  264733  264739  264743  264745  264749  264755  264757  264763  264767  264769  264773  264775  264779  264781  264783  264784  264785  264787  264788  264789  264791  264793  264797  264799  264803  264805  264809  264815  264817  264823  264827  264829  264833  264839  264845  264847  264853  264857  264859  264865  264869  264875  264883  266669 

科目: 來(lái)源: 題型:

【題目】割圓術(shù)是我國(guó)古代計(jì)算圓周率的一種方法.在公元年左右,由魏晉時(shí)期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時(shí)劉微就是利用這種方法,把的近似值計(jì)算到之間,這是當(dāng)時(shí)世界上對(duì)圓周率的計(jì)算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來(lái)逼近未知的、要求的,用有限的來(lái)逼近無(wú)窮的.為此,劉微把它概括為割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這種方法極其重要,對(duì)后世產(chǎn)生了巨大影響,在歐洲,這種方法后來(lái)就演變?yōu)楝F(xiàn)在的微積分.根據(jù)割圓術(shù),若用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù)

A.B.

C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線

(Ⅰ)求曲線C被直線l截得的弦長(zhǎng);

(Ⅱ)與直線l垂直的直線EF與曲線C相切于點(diǎn)Q,求點(diǎn)Q的直角坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】春季氣溫逐漸攀升,病菌滋生傳播快,為了確保安全開(kāi)學(xué),學(xué)校按30名學(xué)生一批,組織學(xué)生進(jìn)行某種傳染病毒的篩查,學(xué)生先到醫(yī)務(wù)室進(jìn)行血檢,檢呈陽(yáng)性者需到防疫部門]做進(jìn)一步檢測(cè).學(xué)校綜合考慮了組織管理、醫(yī)學(xué)檢驗(yàn)?zāi)芰Φ榷嗳f(wàn)面的因素,根據(jù)經(jīng)驗(yàn),采用分組檢測(cè)法可有效減少工作量,具體操作如下:將待檢學(xué)生隨機(jī)等分成若干組,先將每組的血樣混在一起化驗(yàn),若結(jié)果呈陰性,則可斷定本組血樣合格,不必再做進(jìn)一步的檢測(cè);若結(jié)果呈陽(yáng)性,則本組中的每名學(xué)生再逐個(gè)進(jìn)行檢測(cè).現(xiàn)有兩個(gè)分組方案:方案一:將30人分成5組,每組6人;方案二:將30人分成6組,每組5人.已知隨機(jī)抽一人血檢呈陽(yáng)性的概率為05%,且每個(gè)人血檢是否呈陽(yáng)性相互獨(dú)立.

(Ⅰ)請(qǐng)幫學(xué)校計(jì)算一下哪一個(gè)分組方案的工作量較少?

(Ⅱ)已知該傳染疾病的患病率為045%,且患該傳染疾病者血檢呈陽(yáng)性的概率為999%,若檢測(cè)中有一人血檢呈陽(yáng)性,求其確實(shí)患該傳染疾病的概率.(參考數(shù)據(jù):(,

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知拋物線C的焦點(diǎn)為FQ是拋物線上的一點(diǎn),

(Ⅰ)求拋物線C的方程;

(Ⅱ)過(guò)點(diǎn)作直線l與拋物線C交于M,N兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是正方形,梯形底面ABCD,且

(Ⅰ)證明:平面平面;

(Ⅱ)求直線AF與平面CDE所成角的大小.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】蜂巢是由工蜂分泌蜂蠟建成的從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成,菱形的一個(gè)角度是,這樣的設(shè)計(jì)含有深刻的數(shù)學(xué)原理、我國(guó)著名數(shù)學(xué)家華羅庚曾專門研究蜂巢的結(jié)構(gòu)著有《談?wù)勁c蜂房結(jié)構(gòu)有關(guān)的數(shù)學(xué)問(wèn)題》.用數(shù)學(xué)的眼光去看蜂巢的結(jié)構(gòu),如圖,在六棱柱的三個(gè)頂點(diǎn)AC,E處分別用平面BFM,平面BDO,平面DFN截掉三個(gè)相等的三棱錐,,平面BFM,平面BDO,平面DFN交于點(diǎn)P,就形成了蜂巢的結(jié)構(gòu).如圖,設(shè)平面PBOD與正六邊形底面所成的二面角的大小為,則有:(

A.B.

C.D.以上都不對(duì)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】函數(shù),)的部分圖象如圖中實(shí)線所示,圖中圓C的圖象交于M,N兩點(diǎn),且My軸上,則下列說(shuō)法中正確的是(

A.函數(shù)的最小正周期是2π

B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱

C.函數(shù)單調(diào)遞增

D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對(duì)稱

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線

(Ⅰ)求曲線被直線截得的弦長(zhǎng);

(Ⅱ)與直線垂直的直線與曲線相切于點(diǎn),求點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),為函數(shù)的兩個(gè)極值點(diǎn),求證

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某傳染病疫情爆發(fā)期間,當(dāng)?shù)卣e極整合醫(yī)療資源,建立艙醫(yī)院對(duì)所有密切接觸者進(jìn)行14天的隔離觀察治療.治療期滿后若檢測(cè)指標(biāo)仍未達(dá)到合格標(biāo)準(zhǔn),則轉(zhuǎn)入指定?漆t(yī)院做進(jìn)一步的治療.艙醫(yī)院對(duì)所有人員在入口出口時(shí)都進(jìn)行了醫(yī)學(xué)指標(biāo)檢測(cè),若入口檢測(cè)指標(biāo)在35以下者則不需進(jìn)入艙醫(yī)院而是直接進(jìn)入指定?漆t(yī)院進(jìn)行治療.以下是20名進(jìn)入艙醫(yī)院的密切接觸者的入口出口醫(yī)學(xué)檢測(cè)指標(biāo):

入口

50

35

35

40

55

90

80

60

60

60

65

35

60

90

35

40

55

50

65

50

出口

70

50

60

50

75

70

85

70

80

70

55

50

75

90

60

60

65

70

75

70

(Ⅰ)建立關(guān)于的回歸方程;(回歸方程的系數(shù)精確到0.1

(Ⅱ)如果60艙醫(yī)院出口最低合格指標(biāo),那么,入口指標(biāo)低于多少時(shí),將來(lái)這些密切接觸者將不能進(jìn)入艙醫(yī)院而是直接進(jìn)入指定?漆t(yī)院接受治療.(檢測(cè)指標(biāo)為整數(shù))

附注:參考數(shù)據(jù):

參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,

查看答案和解析>>

同步練習(xí)冊(cè)答案