科目: 來源: 題型:
【題目】如圖,三棱柱中,平面,,.以,為鄰邊作平行四邊形,連接和.
(1)求證:平面;
(2)若二面角為45°,
①證明:平面平面;
②求直線與平面所成角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)點M為曲線C上一點,求M到直線l的最小距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的焦距和短軸長度相等,且過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)圓與橢圓C分別交y軸正半軸于點A,B,過點(,且)且與x軸垂直的直線l分別交圓O與橢圓C于點M,N(均位于x軸上方),問直線AM,BN的交點是否在一條定直線上,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1所示在菱形ABCD中,,,點E是AD的中點,將沿BE折起,使得平面平面BCDE得到如圖2所示的四棱錐,點F為AC的中點.在圖2中
(Ⅰ)證明:平面ABE;
(Ⅱ)求點A到平面BEF的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了了解該校高三年級學(xué)生寒假在家自主學(xué)習(xí)的情況,隨機對該校300名高三學(xué)生寒假的每天學(xué)習(xí)時間(單位:h)進行統(tǒng)計,按照,,,,的分組作出頻率分布直方圖如圖所示.
(Ⅰ)根據(jù)頻率分布直方圖計算該校高三年級學(xué)生的平均每天學(xué)習(xí)時間(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);
(Ⅱ)該校規(guī)定學(xué)習(xí)時間超過4h為合格,否則不合格.已知這300名學(xué)生中男生有140人,其中合格的有70人,請補全下表,根據(jù)表中數(shù)據(jù),能否有99.9%的把握認(rèn)為該校高三年級學(xué)生的性別與學(xué)習(xí)時長合格有關(guān)?
男生 | 女生 | 總計 | |
不合格 | |||
合格 | 70 | ||
總計 | 140 | 160 | 300 |
參考公式:,其中.
參考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】兩個數(shù)列、,當(dāng)和同時在時取得相同的最大值,我們稱與具有性質(zhì),其中.
(1)設(shè)的二項展開式中的系數(shù)為(),,記,,,依次下去,,組成的數(shù)列是;同樣地,的二項展開式中的系數(shù)為(),,記,,,依次下去,,組成的數(shù)列是;判別與是否具有性質(zhì),請說明理由;
(2)數(shù)列的前項和是,數(shù)列的前項和是,若與具有性質(zhì),,則這樣的數(shù)列一共有多少個?請說明理由;
(3)兩個有限項數(shù)列與滿足,,且,是否存在實數(shù),使得與具有性質(zhì),請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線上的動點到點的距離是它到點的距離的3倍.
(1)求點的坐標(biāo);
(2)設(shè)雙曲線的右焦點是,雙曲線經(jīng)過動點,且,求雙曲線的方程;
(3)點關(guān)于直線的對稱點為,試問能否找到一條斜率為()的直線與(2)中的雙曲線交于不同的兩點、,且滿足,若存在,求出斜率的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩地相距300千米,汽車從甲地勻速行駛到乙地,速度不超過100千米/小時,已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成,可變部分與速度(千米/小時)的平方成正比,比例系數(shù)為(),固定部分為1000元.
(1)把全程運輸成本(元)表示為速度(千米/小時)的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,汽車應(yīng)以多大速度行駛?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com