科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)點(diǎn)P是曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),,m,nR.
(1)當(dāng)m=0時(shí),求函數(shù)的極值;
(2)當(dāng)n=0時(shí),函數(shù)在(0,)上為單調(diào)函數(shù),求m的取值范圍;
(3)當(dāng)n>0時(shí),判斷是否存在正數(shù)m,使得函數(shù)與有相同的零點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,,且對(duì)任意n,恒成立.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),已知,,(2<i<j)成等差數(shù)列,求正整數(shù)i,j.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某地開發(fā)一片荒地,如圖,荒地的邊界是以C為圓心,半徑為1千米的圓周.已有兩條互相垂直的道路OE,OF,分別與荒地的邊界有且僅有一個(gè)接觸點(diǎn)A,B.現(xiàn)規(guī)劃修建一條新路(由線段MP,,線段QN三段組成),其中點(diǎn)M,N分別在OE,OF上,且使得MP,QN所在直線分別與荒地的邊界有且僅有一個(gè)接觸點(diǎn)P,Q,所對(duì)的圓心角為.記∠PCA=(道路寬度均忽略不計(jì)).
(1)若,求QN的長(zhǎng)度;
(2)求新路總長(zhǎng)度的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(0,1)的直線l與橢圓C交于兩點(diǎn)A,B.己知在橢圓C上存在點(diǎn)Q,使得四邊形OAQB是平行四邊形,求Q的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知在四棱柱ABCD—A1B1C1D1中,底面ABCD是菱形,且平面A1ADD1⊥平面ABCD,DA1=DD1,點(diǎn)E,F分別為線段A1D1,BC的中點(diǎn).
(1)求證:EF∥平面CC1D1D;
(2)求證:AC⊥平面EBD.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,AB是圓O:x2+y2=1的直徑,且點(diǎn)A在第一象限;圓O1:(x﹣a)2+y2=r2(a>0)與圓O外離,線段AO1與圓O1交于點(diǎn)M,線段BM與圓O交于點(diǎn)N,且,則a的取值范圍為_______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓錐曲線的參數(shù)方程為(為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求圓錐曲線的極坐標(biāo)方程;
(2)若直線l過(guò)曲線的焦點(diǎn)且傾斜角為60°,求直線l被圓錐曲線所截得的線段的長(zhǎng)度.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),,,,若.
⑴ 求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
⑵ 將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com