相關習題
 0  266191  266199  266205  266209  266215  266217  266221  266227  266229  266235  266241  266245  266247  266251  266257  266259  266265  266269  266271  266275  266277  266281  266283  266285  266286  266287  266289  266290  266291  266293  266295  266299  266301  266305  266307  266311  266317  266319  266325  266329  266331  266335  266341  266347  266349  266355  266359  266361  266367  266371  266377  266385  266669 

科目: 來源: 題型:

【題目】(本小題10分)選修4—4:坐標系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標方程;

)求C1C2交點的極坐標(ρ≥0,0≤θ

查看答案和解析>>

科目: 來源: 題型:

【題目】己知圓和拋物線,圓的切線與拋物線相交于不同的兩點,.

1)當直線的斜率為1時,求;

2)設點為點關于直線的對稱點,是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】中石化集團通過與安哥拉國家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開采權,集團在某些區(qū)塊隨機初步勘探了部分舊井,取得了地質資料.進入全面勘探時期后集團按網(wǎng)絡點來布置井位來進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見下表:

井位

1

2

3

4

5

6

坐標

鉆探深度

2

4

5

6

8

10

出油量

40

70

110

90

160

205

1)若16號舊井位置滿足線性分布,借助前5組數(shù)據(jù)所求得的回歸直線方程為,且,求,并估計的預報值;

2)現(xiàn)準備勘探新井71,25),若通過,1,35,7號井計算出的,的值與(1)中的值的差不超過10%,則使用位置最接近的舊井,否則在新位置打井,請判斷可否使用舊井?(注:其中的計算結果用四舍五入法保留一位小數(shù))

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目: 來源: 題型:

【題目】五面體中,是等腰梯形,,,,,平面平面.

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)有兩個極值點(為自然對數(shù)的底數(shù)).

(1)求實數(shù)的取值范圍;

(2)求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】有兩種理財產(chǎn)品,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結果之間相互獨立):

產(chǎn)品

投資結果

獲利

不賠不賺

虧損

概率

產(chǎn)品

投資結果

獲利

不賠不賺

虧損

概率

注:

1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;

2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點是圓上的一動點,點,點在線段上,且滿足.

(1)求點的軌跡的方程;

(2)設曲線軸的正半軸,軸的正半軸的交點分別為點,,斜率為的動直線交曲線、兩點,其中點在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,是等邊三角形, 邊上的動點(含端點),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.時,命題“若,則”為真命題

D.命題“”的否定是“,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

同步練習冊答案