相關(guān)習(xí)題
 0  266297  266305  266311  266315  266321  266323  266327  266333  266335  266341  266347  266351  266353  266357  266363  266365  266371  266375  266377  266381  266383  266387  266389  266391  266392  266393  266395  266396  266397  266399  266401  266405  266407  266411  266413  266417  266423  266425  266431  266435  266437  266441  266447  266453  266455  266461  266465  266467  266473  266477  266483  266491  266669 

科目: 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)為棱上一動點(diǎn)(不包括頂點(diǎn)),平面于點(diǎn),則下列結(jié)論中錯誤的是( )

A.存在點(diǎn),使得四邊形為菱形

B.存在點(diǎn),使得四邊形的面積最小

C.存在點(diǎn),使得平面

D.存在點(diǎn),使得平面平面(其中的中點(diǎn))

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項(xiàng)數(shù)列滿足:,,其中

1)若,求數(shù)列的前項(xiàng)的和;

2)若,

①求數(shù)列的通項(xiàng)公式;

②記數(shù)列的前項(xiàng)的和為,若無窮項(xiàng)等比數(shù)列始終滿足,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并說明理由;

2)已知不等式上恒成立,求實(shí)數(shù)的最大值;

3)當(dāng)時(shí),求函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路,,在它們交叉路口點(diǎn)處的東北方向建有一個荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺位于兩條垂直公路的角平分線上,與環(huán)形公路的交點(diǎn)記作.游客游覽荷花池時(shí),需沿公路先到達(dá)環(huán)形公路.為了分流游客,方便游客游覽荷花池,計(jì)劃從靠近公路的環(huán)形公路上選,兩處(,關(guān)于直線對稱)修建直達(dá)觀景臺的玻璃棧道,.以所在的直線為,軸建立平面直角坐標(biāo)系,靠近公路,的環(huán)形公路可用曲線近似表示,曲線符合函數(shù)

1)若百米,點(diǎn)的垂直距離為1百米,求玻璃棧道的總長度;

2)若要使得玻璃棧道的總長度最小為百米,求觀景臺的位置.

查看答案和解析>>

科目: 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤為元.

(1)求商店日利潤關(guān)于需求量的函數(shù)表達(dá)式;

(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.

①求這50天商店銷售該海鮮日利潤的平均數(shù);

②估計(jì)日利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某盒子中有4個小球,分別寫有“中”、“美”、“建”、“交”四個字,從中任取一個小球,有放回抽取,直到“建”、“交”二字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率;利用電腦隨機(jī)產(chǎn)生03之間取整數(shù)值的隨機(jī)數(shù),分別用0,12,3,代表“中”、“美”、“建”、“交”著四個字,以每三個隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了一下18組隨機(jī)數(shù):

323 213 320 032 132 031 123 330 110

321 120 122 321 221 230 132 322 130

由此可以估計(jì),恰好第三次停止的概率為( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】2018年9~12月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年9~12月同比增長25%,該市2017年9~12月郵政快遞業(yè)務(wù)量柱形圖及2018年9~12月郵政快遞業(yè)務(wù)量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計(jì)圖,給出下列結(jié)論:

①2018年9~12月,該市郵政快遞業(yè)務(wù)量完成件數(shù)約1500萬件;

②2018年9~12月,該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年9~12月相比有所減少;

③2018年9~12月,該市郵政快遞國際及港澳臺業(yè)務(wù)量同比增長超過75%,其中正確結(jié)論的個數(shù)為( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目: 來源: 題型:

【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個)和溫度)的7組觀測數(shù)據(jù),其散點(diǎn)圖如所示:

根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識,可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:

27

74

182

表中

1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);

2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時(shí)間內(nèi)的氣溫在之間(包括),估計(jì)該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,.)

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)是等差數(shù)列,公差為,前項(xiàng)和為.

1)設(shè),,求的最大值.

2)設(shè),,數(shù)列的前項(xiàng)和為,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,,,分別是,的中點(diǎn).

1)求證:平面;

2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案