【題目】某商店銷售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量(,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤(rùn)為元.
(1)求商店日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.
①求這50天商店銷售該海鮮日利潤(rùn)的平均數(shù);
②估計(jì)日利潤(rùn)在區(qū)間內(nèi)的概率.
【答案】(1) (2) ①698.8元 ②0.54
【解析】
(1)根據(jù)不同的需求量,整理出函數(shù)解析式;(2)①利用頻率分布直方圖估計(jì)平均數(shù)的方法,結(jié)合利潤(rùn)函數(shù)得到平均利潤(rùn);②根據(jù)利潤(rùn)區(qū)間,換算出需求量所在區(qū)間,從而找到對(duì)應(yīng)的概率.
(1)商店的日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式為:
化簡(jiǎn)得:
(2)①由頻率分布直方圖得:
海鮮需求量在區(qū)間的頻率是;
海鮮需求量在區(qū)間的頻率是;
海鮮需求量在區(qū)間的頻率是;
海鮮需求量在區(qū)間的頻率是;
海鮮需求量在區(qū)間的頻率是;
這50天商店銷售該海鮮日利潤(rùn)的平均數(shù)為:
(元)
②由于時(shí),
顯然在區(qū)間上單調(diào)遞增,
,得;
,得;
日利潤(rùn)在區(qū)間內(nèi)的概率即求海鮮需求量在區(qū)間的頻率:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月鄭州市被國(guó)務(wù)院確定為全國(guó)46個(gè)生活垃圾分類處理試點(diǎn)城市之一,此后由鄭州市城市管理局起草公開(kāi)征求意見(jiàn),經(jīng)專家論證,多次組織修改完善,數(shù)易其稿,最終形成《鄭州市城市生活垃圾分類管理辦法》(以下簡(jiǎn)稱《辦法》).《辦法》已于2019年9月26日被鄭州市人民政府第35次常務(wù)會(huì)議審議通過(guò),并于2019年12月1日開(kāi)始施行.《辦法》中將鄭州市生活垃圾分為廚余垃圾、可回收垃圾、有害垃圾和其他垃圾4類.為了獲悉高中學(xué)生對(duì)垃圾分類的了解情況,某中學(xué)設(shè)計(jì)了一份調(diào)查問(wèn)卷,500名學(xué)生參加測(cè)試,從中隨機(jī)抽取了100名學(xué)生問(wèn)卷,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,,…,,并整理得到如下頻率分布直方圖:
(1)從總體的500名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)不低于60的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的學(xué)生人數(shù),
(3)學(xué)校環(huán)保志愿者協(xié)會(huì)決定組織同學(xué)們利用課余時(shí)間分批參加“垃圾分類,我在實(shí)踐”活動(dòng),以增強(qiáng)學(xué)生的環(huán)保意識(shí).首次活動(dòng)從樣本中問(wèn)卷成績(jī)低于40分的學(xué)生中隨機(jī)抽取2人參加,已知樣本中分?jǐn)?shù)小于40的5名學(xué)生中,男生3人,女生2人,求抽取的2人中男女同學(xué)各1人的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;
(3)數(shù)列滿足.
證明:①;
②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,面,,分別是,的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)證明:當(dāng)時(shí), ;
(2)若當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)檢部門對(duì)某工廠甲、乙兩個(gè)車間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)20克的為合格.
(1)從甲、乙兩車間分別隨機(jī)抽取2個(gè)零件,求甲車間至少一個(gè)零件合格且乙車間至少一個(gè)零件合格的概率;
(2)質(zhì)檢部門從甲車間8個(gè)零件中隨機(jī)抽取3個(gè)零件進(jìn)行檢測(cè),已知三件中有兩件是合格品的條件下,另外一件是不合格品的概率.
(3)若從甲、乙兩車間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車間的零件個(gè)數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn), ,動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若直線與軌跡有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),求證:以為直徑的圓過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com