相關(guān)習(xí)題
 0  46998  47006  47012  47016  47022  47024  47028  47034  47036  47042  47048  47052  47054  47058  47064  47066  47072  47076  47078  47082  47084  47088  47090  47092  47093  47094  47096  47097  47098  47100  47102  47106  47108  47112  47114  47118  47124  47126  47132  47136  47138  47142  47148  47154  47156  47162  47166  47168  47174  47178  47184  47192  266669 

科目: 來源: 題型:

(2012•珠海二模)已知a、b是實(shí)數(shù),則“a>1,b>2”是“a+b>3且ab>2”的(  )

查看答案和解析>>

科目: 來源: 題型:

(2012•珠海二模)已知單位向量
a
,
b
,其夾角為
π
3
,則|
a
+
b
|
=(  )

查看答案和解析>>

科目: 來源: 題型:

經(jīng)過點(diǎn)M(10,
8
3
),漸近線方程為y=±
1
3
x的雙曲線的方程為
x2
36
-
y2
4
=1
x2
36
-
y2
4
=1

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)選修4-5:不等式選講
設(shè)不等式|x-2|<a(a∈N*)的解集為A,且
3
2
∈A,
1
2
∉A

(Ⅰ)求a的值
(Ⅱ)求函數(shù)f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)選修4-2:矩陣與變換
已知直線l:ax+y=1在矩陣A=
12
01
對應(yīng)的變換作用下變?yōu)橹本l′:x+by=1
(I)求實(shí)數(shù)a,b的值
(II)若點(diǎn)P(x0,y0)在直線l上,且A
x0
y
 
0
=
x0
y
 
0
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)已知函數(shù)f(x)=sin(wx+φ)(w>0,0<φ<π)的周期為π,圖象的一個對稱中心為(
π
4
,0),將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個
π
2
單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式
(2)是否存在x0∈(
π
6
,
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某種順序成等差數(shù)列?若存在,請確定x0的個數(shù),若不存在,說明理由;
(3)求實(shí)數(shù)a與正整數(shù)n,使得F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個零點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求證:CD⊥平面ADD1A1
(2)若直線AA1與平面AB1C所成角的正弦值為
67
,求k的值
(3)現(xiàn)將與四棱柱ABCD-A1B1C1D1形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為f(k),寫出f(k)的解析式.(直接寫出答案,不必說明理由)

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)如圖,在正方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)C的坐標(biāo)為(0,10),分別將線段OA和AB十等分,分點(diǎn)分別記為A1,A2,…,A9和B1,B2,…,B9,連接OBi,過Ai作x軸的垂線與OBi,交于點(diǎn)
P
 
i
(i∈N*,1≤i≤9)

(1)求證:點(diǎn)
P
 
i
(i∈N*,1≤i≤9)
都在同一條拋物線上,并求拋物線E的方程;
(2)過點(diǎn)C作直線l與拋物線E交于不同的兩點(diǎn)M,N,若△OCM與△OCN的面積之比為4:1,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)當(dāng)x∈R,|x|<1時,有如下表達(dá)式:1+x+x2+…+xn+…=
1
1-x

兩邊同時積分得:
1
2
0
1dx+
1
2
0
xdx+
1
2
0
x2dx+…
1
2
0
xndx+…=
1
2
0
1
1-x
dx

從而得到如下等式:
1
2
+
1
2
×(
1
2
)2+
1
3
×(
1
2
)3+…+
1
n+1
×(
1
2
)n+1+…=ln2

請根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計算:
C
0
n
×
1
2
+
1
2
C
1
n
×(
1
2
)2+
1
3
C
2
n
×(
1
2
)3+…+
1
n+1
C
n
n
×(
1
2
)n+1
=
1
n+1
[(
3
2
)n+1-1]
1
n+1
[(
3
2
)n+1-1]

查看答案和解析>>

科目: 來源: 題型:

(2013•福建)設(shè)S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對任意x1,x2∈S,當(dāng)x1<x2時,恒有f(x1)<f(x2),那么稱這兩個集合“保序同構(gòu)”,以下集合對不是“保序同構(gòu)”的是( 。

查看答案和解析>>

同步練習(xí)冊答案