8.假設(shè)有兩個(gè)相距很遠(yuǎn)的分子,僅在分子力作用下,由靜止開始逐漸接近,直到不能再接近為止,若兩分子相距無窮遠(yuǎn)時(shí)分子勢(shì)能為零,在這個(gè)過程中,關(guān)于分子勢(shì)能大小的變化情況正確的是( 。
A.分子勢(shì)能先增大,再減小,后又增大B.分子勢(shì)能先減小,后增大
C.分子勢(shì)能先減小,再增大,后又減小D.分子勢(shì)能先增大,后減小

分析 開始時(shí)由于兩分子之間的距離大于r0,因此分子力為引力當(dāng)相互靠近時(shí)分子力做正功,分子勢(shì)能減小,當(dāng)分子間距小于r0,分子力為斥力,相互靠近時(shí),分子力做負(fù)功,分子勢(shì)能增大,整個(gè)過程中能量守恒.

解答 解:開始兩個(gè)分子相距很遠(yuǎn),僅在分子力作用下,由靜止開始逐漸接近,若兩分子相距無窮遠(yuǎn)時(shí)分子勢(shì)能為零,開始時(shí)由于兩分子之間的距離大于r0,因此分子力為引力,當(dāng)相互靠近時(shí)分子力做正功,分子勢(shì)能減小;當(dāng)分子間距小于r0,分子力為斥力,相互靠近時(shí),分子力做負(fù)功,分子勢(shì)能增加;所以分子勢(shì)能分子勢(shì)能先減小,后增大,故B正確,ACD錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 分子力做功對(duì)應(yīng)著分子勢(shì)能的變化,要正確分析分子之間距離與分子力、分子勢(shì)能的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:填空題

18.一個(gè)u夸克的質(zhì)量是7.1×10-30kg,兩個(gè)夸克相距1.0×10-16m時(shí)萬有引力為$3.3×1{0}_{\;}^{-37}$N.(已知引力常量G=6.67×10-11N•m2/Kg2,結(jié)果保留兩位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

19.假設(shè)太陽系中天體的密度不變,天體直徑和天體之間距離都縮小到原來的一半,地球繞太陽公轉(zhuǎn)近似為勻速圓周運(yùn)動(dòng),則下列物理量變化正確的是( 。
A.地球的向心力變?yōu)榭s小前的一半
B.地球的向心力變?yōu)榭s小前的$\frac{1}{16}$
C.地球繞太陽公轉(zhuǎn)周期變?yōu)榭s小前的$\frac{1}{4}$
D.地球繞太陽公轉(zhuǎn)周期不變

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

16.如圖在一次“研究平拋物體的運(yùn)動(dòng)”的實(shí)驗(yàn)中將白紙換成方格紙,每小格的邊長L=5cm,通過實(shí)驗(yàn),記錄了小球在運(yùn)動(dòng)途中的三個(gè)位置,則該小球做平拋運(yùn)動(dòng)的初速度為1.5m/s;運(yùn)動(dòng)到B點(diǎn)的速度大小為2.5m/s.(g取10m/s2

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

3.在勇氣號(hào)火星探測器著陸的最后階段,著陸器降落到火星表面上,再經(jīng)過多次彈跳才停下來.假設(shè)著陸器第一次落到火星表面彈起后,到達(dá)最高點(diǎn)時(shí)高度為h,速度方向是水平的,速度大小為v0.計(jì)算時(shí)不計(jì)火星大氣阻力.已知火星的一個(gè)衛(wèi)星的圓軌道的半徑為r,周期為T.火星可視為半徑為r0的均勻球體,則它第二次落到火星表面時(shí)速度v的大小為( 。
A.$\sqrt{\frac{8{π}^{2}h{r}^{3}}{{T}^{2}}\frac{{r}^{3}}{{{r}_{0}}^{2}}+{{v}_{0}}^{2}}$B.$\sqrt{\frac{4{π}^{2}h}{{T}^{2}}\frac{r}{{{r}_{0}}^{2}}+{{v}_{0}}^{2}}$
C.$\sqrt{\frac{2{π}^{2}h}{{T}^{2}}\frac{r}{{{r}_{0}}^{2}}}$+v0D.$\sqrt{\frac{2{π}^{2}h}{{T}^{2}}\frac{{r}^{3}}{{{r}_{0}}^{2}}}$+v0

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

13.一物體自45m高處以40m/s的水平速度拋出,g取10m/s2,求:
(1)物體落地的水平位移x;
(2)落地時(shí)的速度大小和方向.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

20.某同學(xué)利用圖所示的裝置,通過半徑相同且質(zhì)量分別為m1、m2的A、B兩球所發(fā)生的碰撞來驗(yàn)證動(dòng)量守恒定律.圖中o點(diǎn)為球離開軌道時(shí)球心的投影位置,p點(diǎn)為A球單獨(dú)平拋后的落點(diǎn),p1、p2分別為A、B碰撞后A、B兩球的落點(diǎn).已知A球始終從同一高度滾下.今測得op=x,op1=x1,op2=x2,則動(dòng)量守恒表達(dá)式為m1•x=m1•x1+m2•x2,(用m1、m2、x1、x2表示)若表達(dá)式m1•x2=m1•x12+m2•x22成立,則可判斷AB發(fā)生彈性正碰.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

17.若已知水星繞太陽公轉(zhuǎn)的半徑為r,公轉(zhuǎn)的周期為T,萬有引力恒量為G,則由此可求出( 。
A.水星的質(zhì)量B.太陽的質(zhì)量C.水星的密度D.太陽的密度

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

18.理論和實(shí)踐都證明,開普勒定律不僅適用于太陽系中的天體運(yùn)動(dòng),同樣也適用于衛(wèi)星繞行星的運(yùn)動(dòng).關(guān)于開普勒第三定律的公式$\frac{a^3}{T^2}$,下列說法正確的是( 。
A.公式只適用于軌道是橢圓的運(yùn)動(dòng),不適用于軌道是圓的運(yùn)動(dòng)
B.若已知月球與地球之間的距離,根據(jù)公式可求出地球與太陽之間的距離
C.式中的k值,只與中心天體有關(guān),與繞中心天體旋轉(zhuǎn)的行星(或衛(wèi)星)無關(guān)
D.以上說法均不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案