【題目】MON=90°,點A,B分別在OM、ON上運動(不與點O重合).

1)如圖①,AE、BE分別是∠BAO和∠ABO的平分線,隨著點A、點B的運動,∠AEB=  °

2)如圖②,若BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點D

①若∠BAO=60°,則∠D=    °

②隨著點A,B的運動,∠D的大小會變嗎?如果不會,求∠D的度數(shù);如果會,請說明理由.

3)如圖③,延長MOQ,延長BAG,已知∠BAO,∠OAG的平分線與∠BOQ的平分線及其延長線相交于點E、F,在中,如果有一個角是另一個角的3倍,求∠ABO的度數(shù).

【答案】1135°;(2)①45°,②不發(fā)生變化,45°;(360°或45°

【解析】

1)利用三角形內(nèi)角和定理、兩角互余、角平分線性質(zhì)即可求解;

2)①利用對頂角相等、兩角互余、兩角互補、角平分線性質(zhì)即可求解;

②證明和推理過程同①的求解過程;

3)由(2)的證明求解思路,不難得出=90°,如果有一個角是另一個角的3倍,所以不確定是哪個角是哪個角的三倍,所以需要分情況討論;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.

1

2)①如圖所示

ADBO交于點E,

②∠D的度數(shù)不隨AB的移動而發(fā)生變化

設(shè),因為AD平分∠BAO,所以,因為∠AOB=90°,所以。因為BC平分,所以。又因為。所以

3)因為∠BAO與∠BOQ的平分線交于點E,

所以

所以

因為AE、AF分別是∠BAO和∠OAG的平分線,

所以AEF中,若有一個角是另一個角的3倍,

則①當時,得,此時

②當時,得,此時,舍去。

③當時,得,此時

④當時,得,此時,舍去。

綜上可知,∠ABO的度數(shù)為60°45°。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接五邊形ABCDE中,∠B+∠E=215°,則∠CAD=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,△CDE均為等邊三角形(每個內(nèi)角都是60°),連接BD,AE交于點O,BCAE交于點P.試說明:∠POB=60°.經(jīng)過觀察分析,解題的關(guān)鍵是先利用( )說明△EAC≌△DBC

A.SSSB.ASAC.SASD.AAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:

跳繩數(shù)/個

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學(xué)這次跳繩成績的眾數(shù)是個,中位數(shù)是個;
(3)若跳滿90個可得滿分,學(xué)校初三年級共有720人,試估計該中學(xué)初三年級還有多少人跳繩不能得滿分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知∠α=36°,求長方形卡片的周長.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:RtABC中,∠C90°,ACBC2,將一塊三角尺的直角頂點與斜邊AB的中點M重合,當三角尺繞著點M旋轉(zhuǎn)時,兩直角邊始終保持分別與邊BC、AC交于D,E兩點(DE不與B、A重合).

1)求證:MDME

2)求四邊形MDCE的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運動品牌對第一季度甲、乙兩款運動鞋的銷售情況進行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖所示,已知一月份乙款運動鞋的銷售量是甲款的,第一季度這兩款運動鞋的銷售單價保持不變(銷售額=銷售單價×銷售量)

1)求一月份乙款運動鞋的銷售量.

2)求兩款運動鞋的銷售單價(單位:元)

3)請補全兩個統(tǒng)計圖.

4)結(jié)合第一季度的銷售情況,請你對這兩款運動鞋的進貨,銷售等方面提出一條建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上依次有A,B,C三個海島,某海巡船從A島出發(fā)沿直線勻速經(jīng)B島駛向C島,執(zhí)行海巡任務(wù),最終達到C島.設(shè)該海巡船行駛x(時)后,與B港的距離為y(海里),y與x之間的函數(shù)圖象如圖所示.

(1)A,C兩港口間的距離為海里,a=
(2)求y與x之間的函數(shù)關(guān)系式.
(3)在B島上有一個不間斷發(fā)射信號的信號發(fā)射臺,發(fā)射的信號覆蓋半徑為8海里的圓形區(qū)域,求該海巡船鞥接受到該信號的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊三角形ABC放置在平面直角坐標系中,已知A(0,0)、B(6,0),反比例函數(shù)的圖象經(jīng)過點C.

(1)求點C的坐標及反比例函數(shù)的解析式.
(2)將等邊△ABC向上平移n個單位,使點B恰好落在雙曲線上,求n的值.

查看答案和解析>>

同步練習(xí)冊答案