14.如圖所示,質量為M=0.5kg、長L=1m的平板車B靜止在光滑水平面上,小車左端緊靠一半徑為R=0.8m的光滑四分之一圓弧,圓弧最底端與小車上表面相切,圓弧底端靜止一質量為mC=1kg的滑塊.現(xiàn)將一質量為mA=1kg的小球從圓弧頂端靜止釋放,小球到達圓弧底端后與C發(fā)生彈性碰撞.C與B之間的動摩擦因數(shù)μ=0.2,取g=10m/s2.若在C剛好滑上木板B上表面的同時,給B施加一個水平向右的拉力F.試求:
(1)滑塊C滑上B的初速度v0
(2)若F=2N,滑塊C在小車上運動時相對小車滑行的最大距離.
(3)如果要使C能從B上滑落,拉力F大小應滿足的條件.

分析 (1)根據(jù)動能定理求出A到達圓弧底端的速度,結合動量守恒定律和能量守恒定律求出碰撞后C滑上B的速度.
(2)物體C滑上木板B以后,作勻減速運動,B做勻加速直線運動,抓住兩者速度相等,結合運動學公式和牛頓第二定律求出相對滑動的最大距離.
(3)當F較小時滑塊C從B的右端滑落,滑塊C能滑落的臨界條件是C到達B的右端時,C、B具有共同的速度;當F較大時,滑塊C從B的左端滑落,在C到達B的右端之前,就與B具有相同的速度,此時的臨界條件是之后C必須相對B靜止,才不會從B的左端滑落.根據(jù)牛頓第二定律和運動學公式綜合求解.

解答 解:(1)設A到達圓弧底端的速度為v,由動能定理可得:
${m}_{A}gR=\frac{1}{2}{m}_{A}{v}^{2}$,
代入數(shù)據(jù)解得$v=\sqrt{2gR}=\sqrt{2×10×0.8}m/s=4m/s$.
A與C發(fā)生彈性碰撞,規(guī)定初速度的方向為正方向,由動量守恒定律可得:mAv=mAv′+mcv0,
由機械能守恒定律可得:$\frac{1}{2}{m}_{A}{v}^{2}=\frac{1}{2}{m}_{A}v{′}^{2}+\frac{1}{2}{m}_{C}{{v}_{0}}^{2}$,
由以上兩式解得v′=0,v0=4m/s.
(2)物體C滑上木板B以后,作勻減速運動,此時設B的加速度為aB,C的加速度為aC,由牛頓第二定律得,
μmCg=mCaC,
解得${a}_{C}=μg=0.2×10m/{s}^{2}=2m/{s}^{2}$,
木板B作加速運動,由牛頓第二定律得,F(xiàn)+μmCg=MaB
代入數(shù)據(jù)解得${a}_{B}=8.0m/{s}^{2}$.
兩者速度相同時,有:v0-aCt=aBt,
代入數(shù)據(jù)解得t=0.4s.
C滑行距離${s}_{C}={v}_{0}t-\frac{1}{2}{a}_{C}{t}^{2}=1.44m$,
B滑行的距離${s}_{B}=\frac{1}{2}{a}_{B}{t}^{2}=0.64m$ 
C與B之間的最大距離△s=sC-sB=0.80m.
(3)C從B上滑落的情況有兩種:
①當F較小時滑塊C從B的右端滑落,滑塊C能滑落的臨界條件是C到達B的右端時,C、B具有共同的速度v1,設該過程中B的加速度為aB1,C的加速度不變,
根據(jù)勻變速直線運動的規(guī)律:$\frac{{{v}_{0}}^{2}-{{v}_{1}}^{2}}{2{a}_{C}}=\frac{{{v}_{1}}^{2}}{2{a}_{B1}}+L$,$\frac{{v}_{0}-{v}_{1}}{{a}_{C}}=\frac{{v}_{1}}{{a}_{B1}}$,
由以上兩式可得:${a}_{B1}=6m/{s}^{2}$,v1=3.0m/s,
再代入F+μmCg=MaB1得,F(xiàn)=1N.
即若F<1N,則C滑到B的右端時,速度仍大于B的速度,于是將從B上滑落.
②當F較大時,滑塊C從B的左端滑落,在C到達B的右端之前,就與B具有相同的速度,此時的臨界條件是之后C必須相對B靜止,才不會從B的左端滑落.
對B、C整體有:F=(mC+M)a,對于C有:μmCg=mCa
由以上兩式解得F=3N,即若F大于3N,A就會相對B向左滑行.
綜上所述,力F滿足的條件是:3N≤F或F≤1N.
答:(1)滑塊C滑上B的初速度為4m/s.
(2)若F=2N,滑塊C在小車上運動時相對小車滑行的最大距離為0.80m.
(3)如果要使C能從B上滑落,拉力F大小應滿足的條件3N≤F或F≤1N.

點評 本題是機械能守恒、牛頓第二定律、動量守恒和能量守恒的綜合應用,對于相對運動的距離,可以通過動力學知識求解,也可以根據(jù)能量守恒和動量守恒綜合求解.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

12.如圖所示,水平地面上有質量m=1.0kg的物塊,受到隨時間t變化的水平拉力F作用,用力的傳感器測出相應時刻物塊所受摩擦力Ff的大小.取重力加速度g=10m/s2.下列判斷正確的是( 。
A.物塊開始運動以后做勻加速直線運動
B.4s末物塊所受合外力大小為4N
C.物塊與地面之間的動摩擦因數(shù)為0.3
D.在4s~8s內(nèi)物塊的位移小于16m

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

13.如圖所示,邊長為L的正方形區(qū)域abcd內(nèi)有垂直向外的勻強磁場,磁感應強度為B.現(xiàn)有一質量為m,電荷量為+q的粒子從a點沿ab方向以一定的初速度進入磁場,恰好從d點飛出,不計粒子重力.
(1)求粒子的初速度大小;
(2)若保持粒子的初速度方向不變,只改變粒子的速度大小仍從a點進入磁場,粒子從bc邊的p點射出,且bP=$\frac{\sqrt{3}}{3}$L.求粒子在磁場中的運動時間.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

2.如圖所示,在場強大小為E=2000N/C的水平向右的勻強電場中,將電荷量為q=2×10-6C的正點電荷由A點沿直線移至B點,AB間的距離為L=2cm,AB方向與電場方向成60°角,求:
(1)點電荷所受電場力的大小和方向;
(2)在此過程中電場力做的功WAB;
(3)A、B兩點間的電勢差UAB

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

9.如圖所示,直角三角形支架ABC在豎直平面內(nèi),BC為光滑的輕直細桿,AB垂直于地面,AB桿高為h=0.8m,BC桿與水平面夾角為30°,一個質量為m1=2kg的小球(可視為質點)穿在BC桿上,下懸一個質量為m2=1kg的小球,對桿上小球施加一個水平向左的恒力F使其從BC桿的中點由靜止開始沿桿向上運動,運動過程懸掛小球的懸線與豎直方向夾角為30°,(g取10m/s2),求:
(1)球運動的加速度大;
(2)恒力F的大;
(3)桿上球到達B點時的速度大。

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

19.鉛蓄電池的電動勢為2V,以下說法正確的是(  )
A.電路通過1C電荷量,電源把2J的化學能轉變?yōu)殡娔?/td>
B.鉛蓄電池的電動勢為2V就是鉛蓄電池兩極間的電壓為2V
C.蓄電池能在1s內(nèi)能將2J化學能轉化為電能
D.蓄電池將化學能轉化為電能本領比一節(jié)干電池的大

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

6.甲、乙兩汽車在一條平直的單行道上同向勻速行駛,乙前甲后,甲、乙兩車的速度分別為v1=50m/s和v2=22m/s,當兩車距離s=180m時,由于擔心撞車,甲開始作加速度大小為a1=2.0m/s2的勻減速,2s后乙在后視鏡中看到了甲車,乙開始作加速度大小為a2=1m/s2的勻加速,問甲乙兩車是否會撞車?

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

3.兩剛性球a和b的質量分別為ma和mb、直徑分別為da和db(da>db).將a、b球依次放入一豎直放置、內(nèi)徑為D(D<da+db)的平底圓筒內(nèi),如圖所示.設a、b兩球靜止時對圓筒側面的壓力大小分別為f1和f2,筒底所受的壓力大小為F.已知重力加速度大小為g.若所有接觸面都是光滑的,則( 。
A.F=(ma+mb)gf1=f2B.F=(ma+mb)gf1≠f2
C.mag<F<(ma+mb)gf1=f2D.mag<F<(ma+mb)g,f1≠f2

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

4.關于電荷在電場和磁場中的受力,說法正確的是( 。
A.電荷在電場中一定受到電場力的作用
B.運動電荷在磁場中一定受到洛倫茲力的作用
C.電荷在電場中運動,若只受到電場力的作用,則電場力一定對該電荷做功
D.電荷在磁場中運動,洛倫茲力一定對電荷不做功

查看答案和解析>>

同步練習冊答案