4.如圖所示,上端開口的光滑圓柱形氣缸豎直放置,截面積為80cm2的活塞將一定質(zhì)量的氣體和一形狀不規(guī)則的固體A封閉在氣缸內(nèi),在氣缸內(nèi)距缸底60cm處設(shè)有a、b兩限制裝置,使活塞只能向上滑動.開始時活塞擱在a、b上,缸內(nèi)氣體的壓強為P0(P0=1.0×105 Pa為大氣壓強),溫度為300K.現(xiàn)緩慢加熱汽缸內(nèi)氣體,當溫度為330K,活塞恰好離開a、b;當溫度為360K時,活塞上升了4cm.取g=10m/s2求:活塞的質(zhì)量以及物體A的體積.

分析 先寫出已知條件,根據(jù)等容變化的公式和對活塞受力平衡可以求活塞的質(zhì)量;由等壓變化公式可以求出物體A的體積.

解答 解:設(shè)物體A的體積為△V,氣體的狀態(tài)參量為:
T1=300K,P1=P0=1.0×105 Pa,V1=80×60-△V;
T2=330K,P2=P0+$\frac{mg}{S}$=1.0×105 Pa+$\frac{mg}{S}$,V2=V1
T3=360K,p3=p2,V3=80×(60+4)-△V.
氣體從狀態(tài)1到狀態(tài)2為等容過程,由查理定律得:
$\frac{{p}_{1}}{{T}_{1}}$=$\frac{{p}_{2}}{{T}_{2}}$,即:$\frac{1×1{0}^{5}}{300}$=$\frac{1×1{0}^{5}+\frac{m×10}{80×1{0}^{-4}}}{330}$,
解得:m=8kg;
氣體從狀態(tài)2到狀態(tài)3為等壓過程,由蓋呂薩克定律得:
$\frac{{V}_{2}}{{T}_{2}}$=$\frac{{V}_{3}}{{T}_{3}}$,即:$\frac{80×60-△V}{330}$=$\frac{80×64-△V}{360}$,
解得:△V=1280cm3
答:活塞的質(zhì)量是8kg,物體A的體積1280cm3

點評 本題考查了求活塞質(zhì)量與物體的體積問題,分析清楚氣體狀態(tài)變化過程、求出氣體狀態(tài)參量是解題的前提與關(guān)鍵,應用查理定律與蓋呂薩克定律可以解題.

練習冊系列答案
相關(guān)習題

科目:高中物理 來源: 題型:計算題

7.如圖所示,固定斜面的傾角為θ=37°,質(zhì)量為m=2.0kg的小物塊放在斜面上恰能沿斜面勻速下滑.已知斜面AB的長度L=5.1m,取g=10m/s2,sin37°=0.60,cos37°=0.80.
(1)求物塊與斜面間的動摩擦系數(shù)μ;
(2)若用平行于斜面向上的恒力推該物塊,物塊從斜面底端A點由靜止開始運動了t1=1.2s后撤去外力,物塊剛好能運動到達斜面頂端B點,求推力大小F;
(3)若用平行于斜面向上逐漸減小的力推該物塊,物塊從斜面底端A點由靜止開始運動,為使物塊能運動到斜面頂端B點,該力至少要做的功W.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

15.光滑水平面上有一個質(zhì)量是2kg的物體,它在水平方向上受到互成90°角的兩個力的作用,這兩個力都是10N,這個物體加速度的大小是多少?沿什么方向?

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

12.如圖所示,傾角為θ的斜面與足夠大的光滑水平面在D處平滑連接,斜面上有A、B、C三點,AB間距為2L,BC、CD間距為4L,斜面上BC部分粗糙,其余部分光滑,4塊完全相同、質(zhì)量均勻分布的長方形薄片,緊挨在一起排在斜面上,從下往上編號依次為1、2、3、4,第1塊的下邊緣恰好在A處.現(xiàn)將4塊薄片一起由靜止釋放,薄片經(jīng)過D處時無能量損失且相互之間無碰撞.已知每薄片質(zhì)量為m、長為L,薄片與斜面BC間的動摩擦因數(shù)為tanθ,重力加速度為g.求:
(1)第1塊薄片下邊緣剛運動到B時的速度大小v1;
(2)第1塊薄片剛好完全滑上粗糙面時的加速度大小a和此時第3、4塊間的作用力大小F;
(3)4塊薄片全部滑上水平面后,相鄰滑片間的距離d.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

19.如圖所示,勻強磁場的磁感應強度為B,方向垂直于傾角為θ的絕緣斜面向上.斜面上固定有角度為60°的“A”形光滑金屬導軌MPN,MN連線水平.以MN中點O為原點,OP為x軸建立一錐坐標系Ox.一根質(zhì)量為m、粗細均勻的導體棒CD與一端固定在O點的彈簧連接后垂直于x軸放在導軌上.初始時刻,導體棒在導軌之間的長度為L,彈簧恰處于自然長度,導體棒具有沿導軌向上的初速度v0.整個運動過程中導體棒始終與x軸垂直并與導軌保持良好接觸.已知彈簧的勁度系數(shù)為k,彈簧的中心軸線與x軸平行,導軌和導體棒長度的電阻均為r.
(1)求初始時刻通過導體棒的電流I的大小和方向;
(2)當導體棒第一次回到初始位置時,速度變?yōu)関,求此時導體棒的加速度大小a;
(3)若導體棒最終靜止時彈簧的彈性勢能為Ep,求導體棒從開始運動到停止的過程中,導體棒上產(chǎn)生的焦耳熱Q.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

9.如圖,在水平地面上有一個長木板m2,其上下表面平行,小物塊m1放在m2的左端,m1可看成質(zhì)點.已知它們的質(zhì)量分別為m1=2kg,m2=1kg,木板長度L=8m,m1與m2之間以及m2與地面之間的動摩擦因數(shù)分別為μ1=0.5,μ2=0.3,且最大靜摩擦力等于滑動摩擦力.現(xiàn)用水平向右的恒力F=14N作用于m1上.(g=10m/s2
(1)求m1經(jīng)過多長時間從m2的右端離開;
(2)當m1離開m2后,將m1拿走,則m2一共運動的位移為多少?

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

16.如圖所示,兩條足夠長的平行金屬導軌傾斜放置(導軌電阻不計),傾角為30°,導軌間距為0.5m,勻強磁場垂直導軌平面向下,B=0.2T,兩根材料相同的金屬棒a、b與導軌構(gòu)成閉合回路,a、b金屬棒的質(zhì)量分別為3kg、2kg,兩金屬棒的電阻均為R=1Ω,剛開始兩根金屬棒都恰好靜止,假設(shè)最大靜摩擦力近似等于滑動摩擦力.現(xiàn)對a棒施加一平行導軌向上的恒力F=60N,經(jīng)過足夠長的時間后,兩金屬棒都達到了穩(wěn)定狀態(tài).求:
(1)金屬棒與導軌間的動摩擦因數(shù);
(2)當兩金屬棒都達到穩(wěn)定狀態(tài)時,b棒所受的安培力.
(3)設(shè)當a金屬棒從開始受力向上運動5m時,b金屬棒向上運動了2m,且此時a的速度為4m/s,b的速度為1m/s,則求此過程中回路中產(chǎn)生的電熱及通過a金屬棒的電荷量.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

13.在圖甲中,加速電場A、B板水平放置,半徑R=0.2m的圓形偏轉(zhuǎn)磁場與加速電場的A板相切于N 點,有一群比荷為$\frac{q}{m}$=5×105C/kg的帶電粒子從電場中的M點處由靜止釋放,經(jīng)過電場加速后,從N點垂直于A板進入圓形偏轉(zhuǎn)磁場,加速電場的電壓U隨時間t的變化如圖乙所示,每個帶電粒子通過加速電場的時間極短,可認為加速電壓不變.$\frac{T}{6}$時刻進入電場的粒子恰好水平向左離開磁場,(不計粒子的重力)求

(1)粒子的電性;
(2)磁感應強度B的大;
(3)何時釋放的粒子在磁場中運動的時間最短?最短時間t是多少(π取3).

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

8.如圖所示,疊放的物塊A、B在恒力F作用下由靜止開始沿光滑水平面一起向右運動,則下列說法正確的是( 。
A.物塊A不受摩擦力作用B.物塊A受到向右的摩擦力作用
C.物塊A所受摩擦力一定小于FD.物塊A所受摩擦力可能大于F

查看答案和解析>>

同步練習冊答案